The product has been successfully added to your shopping list.

Total Starch Assay Kit (AA/AMG)

Play Training Video

0:05  Introduction
2:11    Principle
3:26   Reagent and Sample Preparation
6:22   RTS Method (Solubilization & Hydrolysis of Starch)
12:56  RTS-NaOH Method (Solubilization & Hydrolysis of Starch)
15:41   Calculation

Total Starch Assay Kit AA/AMG K-TSTA Scheme
Product code: K-TSTA-100A



100 assays

Prices exclude VAT

Available for shipping

North American customers click here
Content: 50 assays / 100 assays
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: Total Starch
Assay Format: Spectrophotometer
Detection Method: Absorbance
Wavelength (nm): 510
Signal Response: Increase
Linear Range: 4 to 100 μg of D-glucose per assay
Limit of Detection: 0.18 g/100 g total starch “as is”
Total Assay Time: ~ 90 min
Application examples: Cereal flours, food products and other materials.
Method recognition: AACC Method 76-13.01, AOAC Method 996.11, ICC Standard Method No. 168 and RACI Standard Method

The Total Starch (AA/AMG) Assay Kit is used for the determination of total starch in cereal flours and food products.  AOAC Method 996.11, AACC Method 76-13.01.

This kit now contains an improved α-amylase that allows the amylase incubations to be performed at pH 5.0 (as well as pH 7.0). 

See our full range of dietary fiber and starch assay kits.

Scheme-K-TSTA-100A TSTA Megazyme

  • Very competitive price (cost per test) 
  • All reagents stable for > 2 years after preparation 
  • Rapid reaction 
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included
Validation of Methods
Certificate of Analysis
Safety Data Sheet
FAQs Assay Protocol Data Calculator Product Performance
Megazyme publication

Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products.

McCleary, B. V., McLoughlin, C., Charmier, L. M. J. & McGeough, P. (2019). Cereal Chemistry, 97(1), 114-137.

Background and objectives: The importance of selectively measuring available and unavailable carbohydrates in the human diet has been recognized for over 100 years. The levels of available carbohydrates in diets can be directly linked to major diseases of the Western world, namely Type II diabetes and obesity. Methodology for measurement of total carbohydrates by difference was introduced in the 1880s, and this forms the basis of carbohydrate determination in the United States. In the United Kingdom, a method to directly measure available carbohydrates was introduced in the 1920s to assist diabetic patients with food selection. The aim of the current work was to develop simple, specific, and reliable methods for available carbohydrates and digestible starch (and resistant starch). The major component of available carbohydrates in most foods is digestible starch. Findings: Simple methods for the measurement of rapidly digested starch, slowly digested starch, total digestible starch, resistant starch, and available carbohydrates have been developed, and the digestibility of phosphate cross‐linked starch has been studied in detail. The resistant starch procedure developed is an update of current procedures and incorporates incubation conditions with pancreatic α‐amylase (PAA) and amyloglucosidase (AMG) that parallel those used AOAC Method 2017.16 for total dietary fiber. Available carbohydrates are measured as glucose, fructose, and galactose, following complete and selective hydrolysis of digestible starch, maltodextrins, maltose, sucrose, and lactose to glucose, fructose, and galactose. Sucrose is hydrolyzed with a specific sucrase enzyme that has no action on fructo‐oligosaccharides (FOS). Conclusions: The currently described “available carbohydrates” method together with the total dietary fiber method (AOAC Method 2017.16) allows the measurement of all carbohydrates in food products, including digestible starch. Significance and novelty: This paper describes a simple and specific method for measurement of available carbohydrates in cereal, food, and feed products. This is the first method that provides the correct measurement of digestible starch and sucrose in the presence of FOS. Such methodology is essential for accurate labeling of food products, allowing consumers to make informed decisions in food selection.

Hide Abstract
Megazyme publication

Measurement of Starch: Critical evaluation of current methodology.

McCleary, B. V., Charmier, L. M. J. & McKie, V. A. (2018). Starch‐Stärke, 71(1-2), 1800146.

Most commonly used methods for the measurement of starch in food, feeds and ingredients employ the combined action of α‐amylase and amyloglucosidase to hydrolyse the starch to glucose, followed by glucose determination with a glucose oxidase/peroxidase reagent. Recently, a number of questions have been raised concerning possible complications in starch analytical methods. In this paper, each of these concerns, including starch hydrolysis, isomerisation of maltose to maltulose, effective hydrolysis of maltodextrins by amyloglucosidase, enzyme purity and hydrolysis of sucrose and β‐glucans have been studied in detailed. Results obtained for a range of starch containing samples using AOAC Methods 996.11 and 2014 .10 are compared and a new simpler format for starch measurement is introduced. With this method that employs a thermostable α-amylase (as distinct from a heat stable α-amylase) which is both stable and active at 100°C and pH 5.0, 10 samples can be analysed within 2 h, as compared to the 6 h required with AOAC Method 2014.10.

Hide Abstract
Megazyme publication
Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.

Procedures for the measurement of starch, starch damage (gelatinised starch), resistant starch and the amylose/amylopectin content of starch, β-glucan, fructan, glucomannan and galactosyl-sucrose oligosaccharides (raffinose, stachyose and verbascose) in plant material, animal feeds and foods are described. Most of these methods have been successfully subjected to interlaboratory evaluation. All methods are based on the use of enzymes either purified by conventional chromatography or produced using molecular biology techniques. Such methods allow specific, accurate and reliable quantification of a particular component. Problems in calculating the actual weight of galactosyl-sucrose oligosaccharides in test samples are discussed in detail.

Hide Abstract
Megazyme publication
Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.

An American Association of Cereal Chemists/AOAC collaborative study was conducted to evaluate the accuracy and reliability of an enzyme assay kit procedure for measurement of total starch in a range of cereal grains and products. The flour sample is incubated at 95 degrees C with thermostable alpha-amylase to catalyze the hydrolysis of starch to maltodextrins, the pH of the slurry is adjusted, and the slurry is treated with a highly purified amyloglucosidase to quantitatively hydrolyze the dextrins to glucose. Glucose is measured with glucose oxidase-peroxidase reagent. Thirty-two collaborators were sent 16 homogeneous test samples as 8 blind duplicates. These samples included chicken feed pellets, white bread, green peas, high-amylose maize starch, white wheat flour, wheat starch, oat bran, and spaghetti. All samples were analyzed by the standard procedure as detailed above; 4 samples (high-amylose maize starch and wheat starch) were also analyzed by a method that requires the samples to be cooked first in dimethyl sulfoxide (DMSO). Relative standard deviations for repeatability (RSD(r)) ranged from 2.1 to 3.9%, and relative standard deviations for reproducibility (RSD(R)) ranged from 2.9 to 5.7%. The RSD(R) value for high amylose maize starch analyzed by the standard (non-DMSO) procedure was 5.7%; the value was reduced to 2.9% when the DMSO procedure was used, and the determined starch values increased from 86.9 to 97.2%.

Hide Abstract
Megazyme publication

Collaborative evaluation of a simplified assay for total starch in cereal products (AACC Method 76-13).

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Cereal Foods World, 42, 476-480.

A procedure for the quantitative analysis of total starch in plant materials has been developed and subjected to a comprehensive interlaboratory study involving 32 laboratories, in accordance with the protocol for collaborative studies recommended by American Association of Cereal Chemists and AOAC International. The method involved treatment of a sample at approximately 95°C with thermostable α-amylase to obtain starch depolymerization and solubilisation. The slurry is then treated with purified amyloglucosidase to give quantitative hydrolysis of the starch fragments to glucose, which is measured with glucose oxidase/peroxidase reagent. Test samples used in the interlaboratory study included modified and native starches, cereal flours and brans, processed cereal products, animal feeds, and plant material. Results were statistically analysed according to AOAC International guidelines (1). The procedure was shown to be highly repeatable (relative standard deviation 2.1-3.9%) and reproducible (relative standard deviation 2.9-5.0%), and on the basis of these results has gained first approval status with AACC (AACC Method 76-13) and approval as AOAC Method 986.11. The method is more robust than a method previously reported (AACC Method 76-12), and 20 samples can be analysed within 2 hr.

Hide Abstract
Megazyme publication
Total starch measurement in cereal products: interlaboratory evaluation of a rapid enzymic test procedure.

McCleary, B. V., Gibson, T. S., Solah, V. & Mugford, D. C. (1994). Cereal Chemistry, 71(5), 501-505.

The precision of an enzymatic procedure for analysis of total starch in cereal flours and products was determined in a comprehensive inter-laboratory study involving 29 laboratories. Test samples represented a range of sample types, including modified and native starches, cereal flours and brans, processed cereal products, animal feeds, and plant material. Results were statistically analyzed according to AOAC guidelines. The procedure was shown to be highly repeatable (relative standard deviation 1.5-7.3%) and reproducible (relative standard deviation 4.1-11.3%). It is now available, in a slightly modified form, as an assay kit. The assay, therefore, provides a convenient alternative to existing procedures for quantitative measurement of starch in cereal products.

Hide Abstract
Megazyme publication
Quantitative measurement of total starch in cereal flours and products.

McCleary, B. V., Solah, V. & Gibson, T. S. (1994). Journal of Cereal Science, 20(1), 51-58.

A rapid and quantitative method has been developed for the determination of total starch in a wide range of materials, including high-amylose maize starches and food materials containing resistant starch. The method allows the analysis of 20 samples in 3 h. A single assay can be performed in 2 h. For a range of samples, the total starch values obtained with this method were significantly higher than those obtained with current standard methods. Two assay formats have been developed. In assay format 1, the sample is incubated solubilised with the chaotropic agent dimethyl sulphoxide (DMSO) to gelatinise the starch, which is then solubilised and partially depolymerised by controlled incubation at ∼ 100°C with a defined level of thermostable alpha-amylase. This allowed near-complete solubilisation of most starches. The remaining starch is then solubilised and the starch fragments are converted to maltose and maltotriose by the combined action of highly purified pullulanase and beta-amylase. After volume adjustment and filtration (if necessary), the maltooligo-saccharides are hydrolysed by high-purity amyloglucosidase to glucose, which is measured with a glucose oxidase/peroxidase reagent. This assay format gave quantitative starch determination in all native starch samples, including high-amylose maize starches. In assay format 2, which is applicable to most starches and cereal flours, the DMSO pre-treatment step is omitted. Samples containing glucose and/or maltosaccharide are pre-washed with aqueous ethanol before analysis.

Hide Abstract

Combined effects of calcium addition and thermal processing on the texture and in vitro digestibility of starch and protein of black beans (Phaseolus vulgaris).

Alpos, M., Leong, S. Y. & Oey, I. (2021). Foods, 10(6), 1368.

Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.

Hide Abstract

Innovative milling processes to improve the technological and nutritional quality of parboiled brown rice pasta from contrasting Amylose content cultivars.

Taddei, F., Galassi, E., Nocente, F. & Gazza, L. (2021). Foods, 10(6), 1316.

The demand for gluten-free products, including pasta, is increasing and rice pasta accounts for the largest share of this market. Usually, the production of rice pasta requires additives or specific technological processes able to improve its texture, cooking quality, and sensory properties. In this work, two rice cultivars, with different amylose content, were subjected to parboiling, micronization, and flour air fractionation to obtain brown rice pasta, without any supplement but rice itself. In particular, two types of pasta (spaghetti shape) were produced, one from 100% micronized wholemeal, and the other from refined rice flour replaced with 15% of the air-fractionated fine fraction. Regardless of the cultivar, pasta from wholemeal micronized flour showed higher protein and fiber content than refined flour enriched with fine fraction, whereas no differences were revealed in resistant starch and antioxidant capacity. Pasta from the high amylose content genotype showed the highest resistant starch content and the lowest predicted glycemic index along with sensorial characteristics as good as durum semolina pasta in fine fraction enriched pasta. Besides the technological processes, pasta quality was affected the most by the genotype, since pasta obtained from high amylose cv Gladio resulted in the best in terms of technological and sensory quality.

Hide Abstract

Leached starch content and molecular size during sorghum steaming for baijiu production is not determined by starch fine molecular structures.

Li, E., Yang, C., Wang, J., Sun, A., Lv, P. & Li, C. (2021). International Journal of Biological Macromolecules, 184, 50-56.

Sorghum steaming properties are important for both flavor and brewing efficiency of baijiu (Chinese alcohol liquor). However, it is currently unclear with respects to structural factors that affect sorghum steaming properties during baijiu production. In this study, starch fine molecular structures were characterized by size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis for 8 sorghum varieties used in baijiu production. Starch crystalline structures and ordering of double helices were characterized by the X-ray diffraction and differential scanning calorimetry. Results showed that only small differences were observed for starch molecular size distributions and chain-length distributions in the raw sorghum flour. Of significance, the leached starch content and molecular size during steaming was very different among these sorghum varieties. Furthermore, Spearman correlation analysis showed that there was no significant correlation between starch fine structural parameters with the leached starch content. On the other hand, the correlation analysis showed that leached starch molecular size was negatively correlated with starch crystallinity, while positively correlated with the onset and peak gelatinization temperatures. It is concluded that the sorghum steaming property is controlled by the starch crystalline structures instead of starch fine molecular structures. These results could help the baijiu industry to produce baijiu with more desirable properties.

Hide Abstract

Utilization of maltogenic α-amylase treatment to enhance the functional properties and reduce the digestibility of pulse starches.

Li, J., Li, L., Zhu, J. & Ai, Y. (2021). Food Hydrocolloids, 106932.

This study aimed to modify granular lentil (LS), faba bean (FBS) and pea (PS) starches with maltogenic α-amylase (MGA) from Bacillus stearothermophilus, and the MGA-modified starches were then characterized and compared with that produced from native normal maize starch (NMS). MGA treatment did not change the wide-angle X-ray diffraction (WAXD) patterns for all starches. The chain lengths of amylose and long branch chain of amylopectin of all starches were shortened by MGA hydrolysis. The shortening of amylopectin chain length resulted in the retardation of retrogradation rates. The degradation of molecular and granular structures was attributed to the extremely low pasting viscosities of all MGA-modified starches. The 24-h MGA modification increased the resistant starch (RS) contents of cooked LS, FBS, PS and NMS by 5.9%, 6.5%, 4.2% and 4.7%, respectively. The information presented in this study will be important for pulse industries to find new markets for the underutilized pulse starches.

Hide Abstract

Physiochemical characterization and energy contents of novel corn ethanol co-product streams, with and without inclusion of a multi-carbohydrase enzyme blend, for growing pigs.

Boucher, M., Zhu, C., Holt, S. & Huber, L. A. (2021). Canadian Journal of Animal Science, 1-9.

The physiochemical properties and digestible, metabolizable, and predicted net energy contents in high-protein dried distillers’ grain (HiPro) were determined to assess the nutritive value for growing pigs. Twelve Yorkshire × Landrace barrows (initial body weight 25 ± 0.5 kg) were used in a partially replicated Latin square design over three periods (n = 7 or 8) and assigned to one of five experimental diets. In each period, pigs were adapted to diets for 7 d, followed by 5 d of total urine collection and fecal grab sampling. The experimental diets included a corn- and soybean-meal-based diet (CON) or diets containing dried distillers’ grains with solubles (DDGS) or HiPro to partially replace corn and soybean meal, without or with (i.e., DDGS+ and Hipro+) a multi-carbohydrase enzyme blend (0.05% inclusion). The HiPro ingredient contained half as much starch (2.6% vs. 5.2%; DM-basis), 20% more protein (32.5% vs. 27.1%), and had 14% greater water binding capacity versus DDGS. The digestible, metabolizable, and predicted net energy contents of the HiPro co-product were greater than DDGS for growing pigs (P < 0.05), but fibre-degrading enzymes were ineffective at improving energy values. The greater (available) energy and protein contents of HiPro make it a promising feed ingredient for inclusion in swine diets.

Hide Abstract

Effect of roasting pulse seeds at different tempering moisture on the flour functional properties and nutritional quality.

Stone, A. K., Parolia, S., House, J. D., Wang, N. & Nickerson, M. T. (2021). Food Research International, 110489.

Knowledge on the functional and nutritional properties of wet roasted pulses can increase the utilization of processed pulses as ingredients in food products. This study investigated the effects of tempering different pulse [chickpea (CP), green lentil (GL), navy bean (NB) and yellow pea (YP)] seeds to 20 or 30% moisture prior to roasting (160°C for 30 min) on the functional properties and nutritional quality of their resulting flours. The surface charge of each pulse remained the same (p > 0.05) after wet roasting and there were no significant (p > 0.05) differences between the different raw pulse flours. The oil holding capacity (OHC) of GL (~2 g/g) was not improved by wet roasting (p > 0.05) whereas the other pulses generally had better OHC for one or both of the tempering moistures used prior to roasting. Foaming properties of all pulses decreased after heat treatment with the exception of both foaming capacity (107%) and stability (~71%) for GL tempered to 20% moisture prior to roasting (p > 0.05). Raw GL had inferior foaming properties compared to the other raw pulse flours (p < 0.001). Emulsion properties of the wet roasted pulses were similar to those of the control (raw flour) for each pulse. Solubility decreased with roasting regardless of the tempering moisture (p < 0.05) whereas in general the in vitro protein digestibility increased. Small improvements (2.4–6.9% increase) in the in vitro protein digestibility-corrected amino acid score were found for GL and NB tempered to 20% moisture before roasting and roasted YP at either moisture content (p < 0.05). Wet roasting increased (p < 0.05) the rapidly digestible starch content, more so with a tempering moisture of 30%. Overall the results from this study will allow for the utilization of wet roasted pulses as ingredients based on their functional properties and protein quality.

Hide Abstract

A new method to isolate and separate small and large starch granules from barley and malt.

De Schepper, C. F., Gielens, D. R. S. & Courtin, C. M. (2021). Food Hydrocolloids, 106907.

Large lenticular and small spherical starch granules are present in small grains in varying quantities and have different characteristics, affecting how the cereals perform during processing. Separation and isolation of these granules for characterisation is challenging, especially for germinating or malted cereals, because the latter can contain up to a 1000-fold higher α-amylase activity. In this work, a new but simple method is described to isolate starch from barley and malt and separate it in small and large starch granules while avoiding α-amylase activity. A protease treatment at pH 8.0 in the presence of 0.1 M EDTA is used to degrade the protein matrix around the starch granules in an aqueous cereal suspension. After sieving over a 38 μm sieve, highly pure (90.2-95.1 dm%) starch is obtained. Next, sequential sieving over 10 μm and 5 μm sieves results in isolated large and small starch granule fractions with a respective starch purity of 89.8%-93.8% and 76.8%-86.2% and a volume-based granule-type purity higher than 92.9%. Residual EDTA concentration and α-amylase activity in the isolated starch fractions are reduced to a minimum, preventing their interference during the further determination of the starch properties.

Hide Abstract

Energy content of intact and heat-treated dry extruded-expelled soybean meal fed to growing pigs.

Koo, B., Adeshakin, O. & Nyachoti, C. M. (2021). Journal of Animal Science, 99(7), skab131.

An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates per treatment). The three experimental diets were the following: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P < 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P < 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.

Hide Abstract

Endoplasmic reticulum stress pathway mediates the early heat stress response of developing rice seeds.

Sandhu, J., Irvin, L., Liu, K., Staswick, P., Zhang, C. & Walia, H. (2021). Plant, Cell & Environment, 44(8), 2604-2624.

A transient heat stress occurring during early seed development in rice (Oryza sativa) reduces seed size by altering endosperm development. However, the relationship between the timing of the stress and specific developmental stage on heat sensitivity is not well-understood. To address this, we imposed a series of non-overlapping heat stress treatments and found that young seeds are most sensitive during the first two days after flowering. Temporal transcriptome analysis of developing, heat stressed (35°C) seeds during this window shows that Inositol-requiring enzyme 1 (IRE1)-mediated endoplasmic reticulum (ER) stress response and jasmonic acid (JA) pathways are the early (1–3 h) drivers of heat stress response. We propose that increased JA levels under heat stress may precede ER stress response as JA application promotes the spliced form of OsbZIP50, an ER response marker gene linked to IRE1-specific pathway. This study presents temporal and mechanistic insights into the role of JA and ER stress signalling during early heat stress response of rice seeds that impact both grain size and quality. Modulating the heat sensitivity of the early sensing pathways and downstream endosperm development genes can enhance rice resilience to transient heat stress events.

Hide Abstract

Effects of 25-Hydroxyvitamin D3 and oral calcium bolus on lactation performance, ca homeostasis, and health of multiparous dairy cows.

Xu, H., Zhang, Q., Wang, L., Zhang, C., Li, Y. & Zhang, Y. (2021). Animals, 11(6), 1576.

Little information is available regarding the effect of supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus on Ca homeostasis. The objectives of the current study were to evaluate the effects of 25-hydroxyvitamin D3 combined with postpartum oral calcium bolus on lactation performance, serum minerals and vitamin D3 metabolites, blood biochemistry, and antioxidant and immune function in multiparous dairy cows. To evaluate the effects of 25-hydroxyvitamin D3 combined with oral calcium, 48 multiparous Holstein cows were randomly assigned to one of four treatments: (1) supplementing 240 mg/day vitamin D3 without a postpartum oral Ca bolus (control), (2) supplementing 240 mg/day vitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + VitD), (3) supplementing 6 g/day 25-hydroxyvitamin D3 without an oral Ca bolus (25D), and (4) supplementing 6 g/day 25-hydroxyvitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + 25D). Lactation performance during the first 21 days was measured. Blood was collected at the initiation of calving and then 1, 2, 7, 14, and 21 days relative to the calving date. The yield of milk (0.05 < p < 0.10), energy-corrected milk (p < 0.05), 3.5% fat-corrected milk (p < 0.05), and milk protein (p < 0.05) were significantly higher in 25-hydroxyvitamin D3-treated groups within 3 weeks of lactation than in vitamin D3-treated cows. The iCa (p < 0.05) and tCa (p < 0.05) were higher in both Ca and 25D + Ca cows than in the control and 25D groups within 48 h. The concentrations of serum tCa (p < 0.05), tP (p < 0.05), and 25-hydroxyvitamin D3 (p < 0.05) in 25D and 25D + Ca cows were higher than those in control and Ca cows within 21 days postpartum. Feeding 25-hydroxyvitamin D3 also showed a lower concentration of malondialdehyde (p < 0.05), interleukin 6 (p < 0.05), and tumor necrosis factor-alpha (TNF-α) (p < 0.05), as well as a higher concentration of alkaline phosphatase (p < 0.05), total antioxidant capacity (p < 0.05), and immunoglobulin G (p < 0.05) than vitamin D3. Supplementing Ca bolus also showed lower concentrations of alanine transaminase (p < 0.05) and TNF-α (p < 0.05). In conclusion, supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus improved lactation performance, Ca homeostasis, and antioxidant and immune function of medium-production dairy cows within 21 days postpartum.

Hide Abstract

Legume beverages from chickpea and lupin, as new milk alternatives.

Lopes, M., Pierrepont, C., Duarte, C. M., Filipe, A., Medronho, B. & Sousa, I. (2020). Foods, 9(10), 1458.

Recently, milk consumption has been declining and there is a high demand for non-dairy beverages. However, market offers are mainly cereal and nut-based beverages, which are essentially poor in protein (typically, less than 1.5% against the 3.5% in milk) and are not true milk replacers in that sense. In this work, new beverages from different pulses (i.e., pea, chickpea and lupin) were developed using technologies that enable the incorporation of a high level of seed components, with low or no discharge of by-products. Different processing steps were sequentially tested and discussed for the optimization of the sensorial features and stability of the beverage, considering the current commercial non-dairy beverages trends. The lupin beverage protein contents ranged from 1.8% to 2.4% (w/v) and the chickpea beverage varied between 1.0% and 1.5% (w/v). The “milk” yield obtained for the optimized procedure B was 1221 g/100 g of dry seed and 1247 g/100 g of dry seed, for chickpea beverage and lupin beverage, respectively. Sensory results show that chickpea beverage with cooking water has the best taste. All pulses-based beverages are typical non-Newtonian fluids, similarly to current non-dairy alternative beverages. In this respect, the sprouted chickpea beverage, without the cooking water, presents the most pronounced shear-thinning behavior of all formulations.

Hide Abstract

Physicochemical properties, sugar profile, and non-starch polysaccharides characterization of old wheat malt landraces.

Alfeo, V., De Francesco, G., Sileoni, V., Blangiforti, S., Palmeri, R., Aerts, G., Perretti, G. & Todaro, A. (2021). Journal of Food Composition and Analysis, 103997.

Craft beers produced by small breweries are becoming increasingly popular worldwide due to their unique composition, taste, and flavour. Wheat malt is a traditional brewing raw material with great potential to improve beer properties such as mouthfeel, foam, haze, and flavour. In this study, the malting quality of eight wheat varieties (four common and four durum) was evaluated to explore the feasibility of producing 100 % wheat malt beer from old landraces. The physicochemical characteristics such as friability, Kolbach index, viscosity, and colour, of the wheat malts indicated a better degree of modification in the common wheat varieties when compared to that of the durum wheat varieties. The wheat malts showed a proper enzymatic pattern, and significant differences in the enzyme activities were observed in durum and common wheat malts which affected the non-starch and starch polysaccharide content. The sugar content, profile, and extract levels of the congress worts were comparable to those of commercial malts. This study could be a useful resource that enables small brewing and malting to extend their product portfolio and promote the use of old landraces to produce beers with unique tastes and profiles.

Hide Abstract

Influence of particle size uniformity on the filter cake resistance of physically and chemically modified fine particles.

Hennemann, M., Gastl, M. & Becker, T. (2021). Separation and Purification Technology, 272, 118966.

The filter cake resistance determines the flow rate in cake filtration. The resistance depends not only on the mean size of the particles but also on their overall distribution. An example of where we have insufficient understanding of the effect of particle size is lautering-a separation process used in beer production. In this type of filtration, a layer of biological fine particles (<500 µm) with a high filter cake resistance forms on top of the cake and is responsible for a reduction in flow rate. Herein, differences in the resistance of fine particles based on alteration of their size distribution were investigated. An experimental setup was developed to isolate the fine particles from the filter cake, and their chemical and structural compositions were determined. To alter the particle size distribution, physical (heating, agitation) and chemical (prevention of oxidation, polyphenol addition, pH adjustment, ion concentration alteration) modifications were applied. The modifications affected the interparticle interactions, which influenced the size distribution and thus the resistance. The lowest resistance was achieved by heating (-88%) and the highest by agitation (+69%). Contrary to earlier findings, the results of this study show that not only the mean particle size determined resistance; low resistance also depended on high uniformity of the particle size distribution (R2 = 0.856). Compared with a uniform size distribution, a wide size distribution resulted in lower porosity, which was responsible for higher filter cake resistance. The universal validity of the results from the biological suspension was determined using glass beads as an inert model system.

Hide Abstract
Safety Information
Symbol : GHS05, GHS08
Signal Word : Danger
Hazard Statements : H314, H315, H319, H334
Precautionary Statements : P260, P261, P264, P280, P284, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
Total Starch HK Assay Kit K-TSHK TSHK
Total Starch HK Assay Kit
Amylose Amylopectin Assay Kit K-AMYL AMYL
Amylose/Amylopectin Assay Kit
alpha-Amylase Bacillus licheniformis E-BLAAM
α-Amylase (Bacillus licheniformis)
D-Fructose D-Glucose Assay Kit K-FRUGL FRUGL
D-Fructose/D-Glucose Assay Kit
beta-Glucan Assay Kit Mixed Linkage K-BGLU BGLU
β-Glucan Assay Kit (Mixed Linkage)
Available Carbohydrates Assay Kit K-AVCHO AVCHO
Available Carbohydrates Assay Kit
D-Glucose Assay Kit GOPOD Format K-GLUC GLUC
D-Glucose Assay Kit (GOPOD Format)
Protease Subtilisin A from Bacillus licheniformis E-BSPRT
Protease (Subtilisin A from Bacillus licheniformis)