α-Amylase (Bacillus licheniformis)

Reference code: E-BLAAM-40ML
SKU: 700004197

Content:

40 mL - 3000 Units/mL

Content: 10 mL - 3,000 Units/mL or
40 mL - 3,000 Units/mL or
100 mL - 3,000 Units/mL or
100 mL - 750 Units/mL (ANKOM)
Shipping Temperature: Ambient
Storage Temperature: 2-8oC
Formulation: Stabilised solution
Physical Form: Solution
Stability: > 1 year under recommended storage conditions
Enzyme Activity: α-Amylase
EC Number: 3.2.1.1
CAZy Family: GH13
CAS Number: 9000-90-2,
9000-85-5
Synonyms: alpha-amylase; 4-alpha-D-glucan glucanohydrolase
Source: Bacillus licheniformis
Molecular Weight: 58,000
Expression: Purified from Bacillus licheniformis
Specificity: endo-hydrolysis of α-1,4-D-glucosidic linkages in starch.
Specific Activity: ~ 55 U/mg (40oC, pH 6.5 on Ceralpha reagent)
Unit Definition: One Unit of α-amylase is the amount of enzyme required to release one µmole of p-nitrophenol from blocked p-nitrophenyl-maltoheptaoside per minute (in the presence of excess α-glucosidase) at pH 6.5 and 40oC.
Temperature Optima: 75oC
pH Optima: 6.5
Application examples: For use in Megazyme Dietary Fiber methods.
Method recognition: EBC Method 6.5

The E-BLAAM-10ML pack size has been discontinued (read more).

High purity α-Amylase (Bacillus licheniformis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

For use in Megazyme Dietary Fiber methods, suitable for use at pH 6.5 and above.

E-BLAAM-A-100mL specifically to be used with ANKOMTDF Dietary Fiber Analyzer.

Data booklets for each pack size are located in the Documents tab.

We offer other α-amylase in our list of Carbohydrate Active enZYme products.

Publications
Megazyme publication

Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products.

McCleary, B. V., McLoughlin, C., Charmier, L. M. J. & McGeough, P. (2019). Cereal Chemistry, 97(1), 114-137.

Background and objectives: The importance of selectively measuring available and unavailable carbohydrates in the human diet has been recognized for over 100 years. The levels of available carbohydrates in diets can be directly linked to major diseases of the Western world, namely Type II diabetes and obesity. Methodology for measurement of total carbohydrates by difference was introduced in the 1880s, and this forms the basis of carbohydrate determination in the United States. In the United Kingdom, a method to directly measure available carbohydrates was introduced in the 1920s to assist diabetic patients with food selection. The aim of the current work was to develop simple, specific, and reliable methods for available carbohydrates and digestible starch (and resistant starch). The major component of available carbohydrates in most foods is digestible starch. Findings: Simple methods for the measurement of rapidly digested starch, slowly digested starch, total digestible starch, resistant starch, and available carbohydrates have been developed, and the digestibility of phosphate cross‐linked starch has been studied in detail. The resistant starch procedure developed is an update of current procedures and incorporates incubation conditions with pancreatic α‐amylase (PAA) and amyloglucosidase (AMG) that parallel those used AOAC Method 2017.16 for total dietary fiber. Available carbohydrates are measured as glucose, fructose, and galactose, following complete and selective hydrolysis of digestible starch, maltodextrins, maltose, sucrose, and lactose to glucose, fructose, and galactose. Sucrose is hydrolyzed with a specific sucrase enzyme that has no action on fructo‐oligosaccharides (FOS). Conclusions: The currently described “available carbohydrates” method together with the total dietary fiber method (AOAC Method 2017.16) allows the measurement of all carbohydrates in food products, including digestible starch. Significance and novelty: This paper describes a simple and specific method for measurement of available carbohydrates in cereal, food, and feed products. This is the first method that provides the correct measurement of digestible starch and sucrose in the presence of FOS. Such methodology is essential for accurate labeling of food products, allowing consumers to make informed decisions in food selection.

Hide Abstract
Megazyme publication

Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study.

McCleary, B. V., McNally, M., Monaghan, D. & Mugford, D. C. (2002). Journal of AOAC International, 85(5), 1096-1102.

This study was conducted to evaluate the method performance of a rapid procedure for the measurement of α-amylase activity in flours and microbial enzyme preparations. Samples were milled (if necessary) to pass a 0.5 mm sieve and then extracted with a buffer/salt solution, and the extracts were clarified and diluted. Aliquots of diluted extract (containing α-amylase) were incubated with substrate mixture under defined conditions of pH, temperature, and time. The substrate used was nonreducing end-blocked p-nitrophenyl maltoheptaoside (BPNPG7) in the presence of excess quantities of thermostable α-glucosidase. The blocking group in BPNPG7 prevents hydrolysis of this substrate by exo-acting enzymes such as amyloglucosidase, α-glucosidase, and β-amylase. When the substrate is cleaved by endo-acting α-amylase, the nitrophenyl oligosaccharide is immediately and completely hydrolyzed to p-nitrophenol and free glucose by the excess quantities of α-glucosidase present in the substrate mixture. The reaction is terminated, and the phenolate color developed by the addition of an alkaline solution is measured at 400 nm. Amylase activity is expressed in terms of Ceralpha units; 1 unit is defined as the amount of enzyme required to release 1 µmol p-nitrophenyl (in the presence of excess quantities of α-glucosidase) in 1 min at 40°C. In the present study, 15 laboratories analyzed 16 samples as blind duplicates. The analyzed samples were white wheat flour, white wheat flour to which fungal α-amylase had been added, milled malt, and fungal and bacterial enzyme preparations. Repeatability relative standard deviations ranged from 1.4 to 14.4%, and reproducibility relative standard deviations ranged from 5.0 to 16.7%.

Hide Abstract
Megazyme publication

New developments in the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase.

McCleary, B. V. & Monaghan, D. (2000). “Proceedings of the Second European Symposium on Enzymes in Grain Processing”, (M. Tenkanen, Ed.), VTT Information Service, pp. 31-38.

Over the past 8 years, we have been actively involved in the development of simple and reliable assay procedures, for the measurement of enzymes of interest to the cereals and related industries. In some instances, different procedures have been developed for the measurement of the same enzyme activity (e.g. α-amylase) in a range of different materials (e.g. malt, cereal grains and fungal preparations). The reasons for different procedures may depend on several factors, such as the need for sensitivity, ease of use, robustness of the substrate mixture, or the possibility for automation. In this presentation, we will present information on our most up-to-date procedures for the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase, with special reference to the use of particular assay formats in particular applications.

Hide Abstract
Megazyme publication
An improved enzymic method for the measurement of starch damage in wheat flour.

Gibson, T. S., Al Qalla, H. & McCleary, B. V. (1992). Journal of Cereal Science, 15(1), 15-27.

An improved enzymic method for the determination of starch damage in wheat flour has been developed and characterized. The proposed method is simple and reliable, and enables up to 20 samples to be measured in duplicate in 2 h. A single assay takes approximately 40 min. The assay protocol is in two phases. In the first, the flour sample is incubated with purified fungal alpha-amylase to liberate damaged starch granules as soluble oligosaccharides. After centrifugation, the oligosaccharides in the supernatant are hydrolysed by amyloglucosidase to glucose in phase 2. The glucose is then quantified with a glucose oxidase/peroxidase reagent. The proposed method therefore avoids potential errors associated with existing standard assays, which employ unpurified amylase preparations and non-specific reducing group methods to quantify the hydrolytic products. Despite the use of purified assay components, the proposed starch damage method did not exhibit an absolute end-point to the action of alpha-amylase in phase 1. This was due to a low rate of hydrolysis of undamaged granules, and is a feature of enzymic methods for starch damage determination. Other amylolytic enzymes, including beta-amylase, isoamylase and pullulanase, and combinations of these enzymes, were evaluated as alternatives to alpha-amylase in the proposed method. These enzymes, when used alone, gave no benefits over the use of alpha-amylase. When used in combination with alpha-amylase, there was a synergistic action on undamaged granules. A test kit based on the assay format described in this paper is the subject of an international interlaboratory evaluation.

Hide Abstract
Megazyme publication
A new procedure for the measurement of fungal and bacterial α-amylase.

Sheehan, H. & McCleary, B. V. (1988). Biotechnology Techniques, 2(4), 289-292.

A procedure for the measurement of fungal and bacterial α-amylase in crude culture filtrates and commercial enzyme preparations is described. The procedure employs end-blocked (non-reducing end) p-nitrophenyl maltoheptaoside in the presence of amyloglucosidase and α-glucosidase, and is absolutely specific for α-amylase. The assay procedure is simple, reliable and accurate.

Hide Abstract
Megazyme publication

Measurement of cereal α-Amylase: A new assay procedure.

McCleary, B. V. & Sheehan, H. (1987). Journal of Cereal Science, 6(3), 237-251.

A new procedure for the assay of cereal α-amylase has been developed. The substrate is a defined maltosaccharide with an α-linked nitrophenyl group at the reducing end of the chain, and a chemical blocking group at the non-reducing end. The substrate is completely resistant to attack by β-amylase, glucoamylase and α-glucosidase and thus forms the basis of a highly specific assay for α-amylase. The reaction mixture is composed of the substrate plus excess quantities of α-glucosidase and glucoamylase. Nitrophenyl-maltosaccharides released on action of α-amylase are instantaneously cleaved to glucose plus free p-nitrophenol by the glucoamylase and α-glucosidase, such that the rate of release of p-nitrophenol directly correlates with α-amylase activity. The assay procedure shows an excellent correlation with the Farrand, the Falling Number and the Phadebas α-amylase assay procedures.

Hide Abstract
Publication

The molecular structure of leaf starch from three cereal crops.

Li, C., Ding, Z., Li, E., Xu, R., Lv, C., Zhang, C., Huang, L. & Gilbert, R. G. (2025). Carbohydrate Polymers, 351, 123099.

Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g. by helping breeders produce slowly digested amylopectin, which is beneficial for human nutrition). In the present study, leaf starches from rice, wheat and barley were isolated with cesium chloride gradient centrifugation. Starch fine structure was measured using size-exclusion chromatography and flurophore-assisted carbohydrate electrophoresis. The chain-length distribution (CLD) of amylopectin leaf starch was trimodal in wheat and barley leaf starch. The global peak of leaf starch was at degree of polymerization (DP) 22, and leaf amylopectin containeds more long branches, which are generally considered to hinder starch digestion, suggesting that leaf-specific starch synthesis enzymes could be expressed in the endosperm by genetic modification to produce amylopectin with more long chains, which would be more slowly digested, with advantages to human health.

Hide Abstract
Publication

Capsules as Minibioreactors: Effect of the Formulation on the Probiotic Metabolism and Confinement.

Passannanti, F., Lentini, G., Cante, R. C., Nigro, F., Gallo, M., Nigro, R. & Budelli, A. (2024). Chemical Engineering Transactions, 110, 319-324.

Encapsulation is a commonly used tool in the pharmaceutical and nutraceutical fields to protect the compound of interest from adverse environmental conditions (i.e., production process, gastrointestinal transit, immune defense) or to ensure a target or controlled release of an active principle. However, capsules can also be used as reactors, by which probiotics can carry out a fermentation with improved process performances. In the present work, hydrolyzed oatmeal capsules were developed as mini-bioreactors, segregating the probiotic strain in active fermentation and allowing the metabolite release. The aim was to study how composition can influence the ability to ferment and the confinement of microorganisms. Four different capsules formulations were studied varying CaCl2 and alginate concentrations [(i) 0.5% alginate-0,1 M CaCl2; (ii) 1% alginate-1 M CaCl2; (iii) 1% alginate-3 M CaCl2; (iv) 1% alginate-5 M CaCl2]. The capsules were suspended in the same hydrolyzed oatmeal suspension used to produce them and left to ferment at 37°C for 24h. Microbiological and chemical analyses were carried out on both capsules and external liquids. An increase in the bacterial concentration of about 3 logs was recognized for all the first three formulations in the capsules, while a growth inhibition was observed for the (iv) formulation, the only formulation for which microorganism confinement was also noted. The highest lactic acid production (15.9 g/L) was observed for the (ii) formulation, while the lowest one was also recorded for formulation (iv). Optical analyses confirmed the different structural characteristics of the capsules.

Hide Abstract
Publication

Cassava waste (stem and leaf) analysis for reuse.

Soares, I. S., Perrechil, F., Grandis, A., Pagliuso, D., Purgatto, E., de Oliveira, L. A. & Cavalari, A. A. (2024). Food Chemistry Advances, 4, 100675.

Cassava is an important crop for developing countries. In addition to its roots, the leaves are rich in proteins and minerals that could substantially supplement diets if treated properly, as they contain some anti-nutritional factors. Plant residues can be used as raw material in the food industry and as bioenergy. This work aimed to characterize the profile of macronutrients and polysaccharides in leaves and stems of two cassava clones generated by the breeding program (classical genetic improvement/grafting) of Embrapa Mandioca & Fruticultura. Dehydrated and crushed leaves and stems evaluated for chemical composition, in addition to the determination of cyanogenic compounds and polysaccharides. Macronutrients were similar between the two studied clones in stem and leaves. Moisture values of approximately 8.5 %, a protein content of 20.44 % and small amounts of soluble sugars and starch, overlapping the fiber content that approaches 25 %, containing a low concentration of pectins but high levels of lignin, which gives the material potential for saccharification mainly in the trunk. The results also showed that these foods, used in animal feed, represent potential raw materials for the food and bioenergy industry with high added value.

Hide Abstract
Publication

Ultrasound-assisted starch hydrolyzing by alpha-amylase: Implementation of computational fluid dynamics, acoustic field determination, and rheology modeling.

Roohi, R., Abedi, E. & Hashemi, S. M. B. (2024). Ultrasonics Sonochemistry, 103, 106785.

The study aimed to optimize the ultrasonic-assisted modification (UAM) of corn and potato starch by assessing the influence of ultrasound geometry, power, and frequency on the fluid flow for sonicated starch to achieve porous starch with a higher degree of hydrolyzing by α-amylase. This assessment was conducted through mathematical modeling and 3D computational fluid dynamics (CFD) simulations. The ultrasonic pressure field is determined by the solution of the non-linear Westervelt equation in the frequency domain. Then, the obtained field is utilized to simulate the dissipated power and flow field characteristics. According to the results obtained from the Rapid Visco Analyzer (RVA), it was observed that the peak and final viscosity of hydrolyzed sonicated starch were less than hydrolyzed native starch. This decrease in viscosity indicates a breakdown of the starch structure, leading to a more fluid-like consistency. The shear rate and shear stress data are used for rheology modeling. The fluid's viscosity is represented based on three models of Herschel–Bulkley, Casson, and Power law (Ostwald–de Waele). The magnitude of yield shear stress at low shear rates, the shear-thinning behavior, and the nearly Newtonian fluid nature at high shear rates are extracted from the viscosity models. The surfaces of the starch granules were analyzed using scanning electron microscopy (SEM) revealed that sonication treatments caused damage, cracks, and porosity on the surfaces of the starch granules which were prone to amylolytic enzymes. This indicates that the structural integrity of the granules was compromised and facilitated enzyme penetration. This study proposes that ultrasonication can be utilized to produce damaged starch, which is susceptible to hydrolysis by α-amylase. This approach holds the potential for reducing enzyme consumption in various industries.

Hide Abstract
Publication

Basic Composition, Antioxidative Properties, and Selected Mineral Content of the Young Shoots of Nigella (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Camelina (Camelina sativa L.) at Different Stages of Vegetation.

Kapusta-Duch, J., Smoleń, S., Jędrszczyk, E., Leszczyńska, T. & Borczak, B. (2024). Applied Sciences, 14(3), 1065.

Young shoots are a completely new and rapidly growing group of foodstuffs. Also known as “vegetable confetti”, they are a useful addition to commonly consumed meals and often serve a decorative purpose, especially when paired with traditional dishes. Most users are unaware of their invaluable properties as a source of bioactive compounds and add them simply as a dish garnish. Hence, the aim of this study is to evaluate and compare selected health quality parameters of the young shoots of rare oilseed plants (Nigella sativa L., Carthamus tinctorius L., and Camelina sativa L.), which have not been studied in the literature. They are examined for proximate composition (dry matter, total protein, crude fat, ash, digestible carbohydrates, dietary fiber), antioxidative properties (vitamin C, total carotenoids, and total polyphenol content), the content of sixteen selected minerals (calcium, potassium, magnesium, sodium, phosphorus, sulphur, selenium, barium, iron, lithium, beryllium, nickel, gallium, indium, bismuth, silver) as well as antioxidant activity at two harvest dates. The ready-to-eat young shoots in the phase of intensive growth are characterized by a very high content of the examined components and antioxidant properties, which differ depending on the harvest date and plant species. Significantly higher contents of protein, fat, and some minerals have been found in the young shoots from the first harvest compared to those from the second harvest. The antioxidant properties of the young shoots generally increase with maturity. It was not possible, however, to conclusively assess which species of young shoots show the highest health quality.

Hide Abstract
Publication

Effects of suspension media on high pressure processing of starches with different crystalline structures.

Gonzalez, A. & Wang, Y. J. (2023). Food Chemistry, 429, 136933.

High pressure processing (HPP) is a starch modification method generally conducted in water, and little is known about the pressure-induced changes in different media. This study investigated the effects of water versus sodium sulfate on corn, potato, and pea starches subjected to HPP at 690 MPa. HPP in both media reduced gelatinization enthalpy and crystallinity for all starches. HPP in sodium sulfate promoted the transition of common corn and potato starches to C-type crystallites. HPP starches in sodium sulfate generally displayed lower pasting temperatures, higher peak viscosities, and greater breakdowns than in water. Alpha-amylase susceptibility increased for all HPP starches and was generally lower in sodium sulfate than in water. HPP common corn and potato starchs in sodium sulfate displayed a porous structure after α-amylase digestion. The competition of sodium sulfate for water molecules between starch helices induced variations in the properties of HPP starches with different crystalline structures.

Hide Abstract
Publication

The RLCK–VND6 module coordinates secondary cell wall formation and adaptive growth in rice.

Cao, S., Wang, Y., Gao, Y., Xu, R., Ma, J., Xu, Z., Shang-Guan, K., Zhang, B. & Zhou, Y. (2023). Molecular Plant, 16(6), 999-1015.

The orderly deposition of secondary cell wall (SCW) in plants is implicated in various biological programs and is precisely controlled. Although many positive and negative regulators of SCW have been documented, the molecular mechanisms underlying SCW formation coordinated with distinct cellular physiological processes during plant adaptive growth remain largely unclear. Here, we report the identification of Cellulose Synthase co-expressed Kinase1 (CSK1), which encodes a receptor-like cytoplasmic kinase, as a negative regulator of SCW formation and its signaling cascade in rice. Transcriptome deep sequencing of developing internodes and genome-wide co-expression assays revealed that CSK1 is co-expressed with cellulose synthase genes and is responsive to various stress stimuli. The increased SCW thickness and vigorous vessel transport in csk1 indicate that CSK1 functions as a negative regulator of SCW biosynthesis. Through observation of green fluorescent protein-tagged CSK1 in rice protoplasts and stable transgenic plants, we found that CSK1 is localized in the nucleus and cytoplasm adjacent to the plasma membrane. Biochemical and molecular assays demonstrated that CSK1 phosphorylates VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master SCW-associated transcription factor, in the nucleus, which reduces the transcription of a suite of SCW-related genes, thereby attenuating SCW accumulation. Consistently, genetic analyses show that CSK1 functions upstream of VND6 in regulating SCW formation. Interestingly, our physiological analyses revealed that CSK1 and VND6 are involved in abscisic acid-mediated regulation of cell growth and SCW deposition. Taken together, these results indicate that the CSK1–VND6 module is an important component of the SCW biosynthesis machinery, which coordinates SCW accumulation and adaptive growth in rice. Our study not only identifies a new regulator of SCW biosynthesis but also reveals a fine-tuned mechanism for precise control of SCW deposition, offering tools for rationally tailoring agronomic traits.

Hide Abstract
Publication

In Vitro Bioaccessibility of Proteins and Bioactive Compounds of Wild and Cultivated Seaweeds from the Gulf of Saint Lawrence.

Vasconcelos, M. M., Marson, G. V., Rioux, L. E., Tamigneaux, E., Turgeon, S. L., & Beaulieu, L. (2023). Marine Drugs, 21(2), 102.

Despite the increased interest in macroalgae protein and fibers, little information is available on their bioaccessibility. The application of an in vitro gastrointestinal digestion model to study the degree of disintegration and release of proteins with expressed bioactivities from wild and cultivated Palmaria palmata and Saccharina latissima was proposed in this study. Macroalgae from the Gulf of St Lawrence, Canada, were submitted to digestive transit times of 2 (oral), 60 (gastric) and 120 (duodenal) minutes. Among wild samples, P. palmata had a higher percentage of disintegration, protein release and degree of hydrolysis than S. latissima. While the least digested sample, wild S. latissima, was the sample with the highest antioxidant activity (210 μmol TE g−1), the most digested sample, cultivated P. palmata, presented the highest ability to inhibit the angiotensin-converting enzyme (ACE), reaching 32.6 ± 1.2% at 3 mg mL−1. ACE inhibitory activity increased from 1 to 3 mg mL−1, but not at 5 mg mL−1. Wild samples from both species showed an ACE inhibition around 27.5%. Data suggested that the disintegration of the samples was influenced by their soluble and insoluble fiber contents. Further information on the bioaccessibility and bioactivity of these macroalgae should consider the characterization of digestion products other than protein, as well as the effects of previous product processing.

Hide Abstract
Publication

Determining levels of water-extractable and water-unextractable arabinoxylan in commercial Swedish wheat flours by a high-throughput method.

Selga, L., Andersson, A. A., Moldin, A. & Andersson, R. (2022). Journal of Cereal Science, 109, 103608.

A high-throughput method for quantification of water extractable arabinoxylan (WE-AX) and water unextractable arabinoxylan (WU-AX) was adapted for and evaluated on 197 commercial Swedish wheat flours, collected continuously during harvest years 2018 and 2019. In the method, starch was hydrolysed by alpha-amylase and WE-AX was precipitated with 80% ethanol. AX residues were quantified by gas chromatography after acid hydrolysis. The method had a good repeatability (2.1% RSDr for total AX). Spring wheat flour had a higher WE-AX content (0.68%) and lower WU-AX content (1.19%) than winter wheat flour (0.56% and 1.31%). The variation of total AX content was high for winter wheat flour (1.5-2.2%), with no correlation to ash or protein content. Total AX content differed significantly both between harvest years and locations, indicating an impact from environment on AX composition. Overall, the method enabled high-throughput analysis of wheat flour and can be further used to study how endogenous AX impacts baking quality.

Hide Abstract
Publication

Nitrogen fertilization of rice plants before flowering affects sake fermentation and quality.

Miyamoto, T., Nishida, I., Ohtake, N. & Hirata, D. (2022). Cereal Chemistry, In Press.

Background and Objective: Nitrogen fertilizer applied as top-dressing to rice plants before flowering affects the yield and quality of rice grains. However, little is known about the effects of varying dosages of nitrogen at this stage on the brewing properties of sake using the rice grains. To explore this topic, we cultivated the sake rice cultivar “Koshitanrei” with low and high levels of nitrogen (equivalent to 10 kg and 30 kg N per hectare, respectively) applied 1 week before flowering and then conducted a small-scale sake brewing test using the harvested rice. Findings: Sake made from rice from the low-N treatment was fermented more efficiently. This yielded a higher volume of sake with a higher alcohol concentration and decreased amino acid concentrations. Conclusions: The use of rice from the low-N treatment enhanced alcohol fermentation, resulting in increased alcohol yield and decreased concentrations of amino acids and related compounds.

Hide Abstract
Publication

Physiological responses to low CO2 over prolonged drought as primers for forest-grassland transitions.

Bellasio, C., Quirk, J., Ubierna, N. & Beerling, D. J. (2022). Nature Plants, 8(9), 1014-1023.

Savannahs dominated by grasses with scattered C3 trees expanded between 24 and 9 million years ago in low latitudes at the expense of forests. Fire, herbivory, drought and the susceptibility of trees to declining atmospheric CO2 concentrations ([CO2]a) are proposed as key drivers of this transition. The role of disturbance is well studied, but physiological arguments are mostly derived from models and palaeorecords, without direct experimental evidence. In replicated comparative experimental trials, we examined the physiological effects of [CO2]a and prolonged drought in a broadleaf forest tree, a savannah tree and a savannah C4 grass. We show that the forest tree was more disadvantaged than either the savannah tree or the C4 grass by the low [CO2]a and increasing aridity. Our experiments provide insights into the role of the intrinsic physiological susceptibility of trees in priming the disturbance-driven transition from forest to savannah in the conditions of the early Miocene.

Hide Abstract
Publication

Formulating diets for intestinal unavailable nitrogen using blood meal in high-producing dairy cattle.

Gutierrez-Botero, M., Ross, D. A. & Van Amburgh, M. E. (2022). Journal of Dairy Science, 107(7), 5738-5746.

The high cost of protein feeds and growing concern for the environment have motivated dairy producers and nutritionists to focus their attention on reducing nitrogen (N) losses on dairy farms. It is well recognized that reducing the N content of cattle diets is the single most important factor to increase the efficiency of N use. However, effectively lowering the N content of diets requires the nutritionist to know the availability of N in feeds so as to not negatively affect milk production or overfeed N. To provide reliable data for nutritionists, a new assay to estimate unavailable N in the intestine (uN) was developed. To determine whether uN could be used as a replacement for acid detergent insoluble nitrogen (ADIN) in diet formulation, we conducted a replicated pen study to evaluate the effect of total-tract uN on the performance of high-producing dairy cattle. One hundred twenty-eight cattle that were 97 to 147 d in milk at the beginning of the experiment were allocated into 8 pens of 16 cows, and pens were randomly allocated to 2 dietary treatments. Cattle were fed 1 of 2 isonitrogenous and isocaloric diets that were also equal in neutral detergent fiber, deviating only in the inclusion of 2 different blood meals (BM) used in each diet. The uN contents of the 2 BM were 9% (low uN) and 34% (high uN) total N content as predicted by the assay, whereas when measured as ADIN, no difference in indigestibility was observed. The inclusion of BM was on an isonitrogenous basis, and the predicted difference in uN was 39 g/d or 5.8% of N intake, representing the formulated difference in available N between the 2 treatments. There was no effect of uN on dry matter or N intake, which averaged 27.3 kg/d and 668 g/d for both treatments, respectively. Milk yield and energy-corrected milk were 1.6 and 1.9 kg/d greater for cows fed the low uN diet compared with those fed the high uN diet. The lower uN diet was also associated with greater milk protein yield, greater milk fat yield, and greater milk urea N. The Cornell Net Carbohydrate and Protein System (version 6.5) was used to evaluate the application of the uN measurement by replacing ADIN in BM with the uN value in the inputs for the BM. All other cow and feed chemistry data were inputted as measured in the experiment. The predictions of metabolizable protein-allowable milk demonstrated that using the uN values in place of ADIN increased the accuracy of the prediction and enabled the model to predict the first-limiting nutrient provided all other feed, cattle, and management characteristics were also defined.

Hide Abstract
Publication

Effects of different polyphenol-rich herbal teas on reducing predicted glycemic index.

Ugur, H., Catak, J., Ozgur, B., EFE., E., Gorunmek, M., Belli, I. & Yaman, M. (2022). Food Science and Technology, 42.

The purpose of this study was to investigate the effects of different polyphenol-rich herbal teas on reducing the in vitro starch digestibility of white bread and evaluation of predicted glycemic indexes. Generally, except for the goji berry treatment, all herbal teas reduced the starch digestibility and predicted glycemic index of white bread. Compared to untreated white bread, the rapidly digestible starch levels were decreased by 10% and 12% in the turmeric tea treatment. In addition, hydrolysis indexes were decreased by 12% and 10% in the black tea treatment compared to untreated white bread. The turmeric treatment on white bread reduced the predicted glycemic index more than other teas. It is thought that the curcumin in turmeric has more inhibitory effects on α-amylase activity than other teas. We also demonstrated that dietary polyphenols such as anthocyanins and catechins found in herbal teas might reduce starch digestion by inhibiting α-amylase and α-glucosidase thereby lowering the glycemic index of foods.

Hide Abstract
Publication

Duckweeds as promising food feedstocks globally.

Pagliuso, D., Grandis, A., Fortirer, J. S., Camargo, P., Floh, E. I. S. & Buckeridge, M. S. (2022). Agronomy, 12(4), 796.

Duckweeds are the smallest flowering plants on Earth. They grow fast on water’s surface and produce large amounts of biomass. Further, duckweeds display high adaptability, and species are found around the globe growing under different environmental conditions. In this work, we report the composition of 21 ecotypes of fourteen species of duckweeds belonging to the two subfamilies of the group (Lemnoideae and Wolffioideae). It is reported the presence of starch and the composition of soluble sugars, cell walls, amino acids, phenolics, and tannins. These data were combined with literature data recovered from 85 publications to produce a compiled analysis that affords the examination of duckweeds as possible food sources for human consumption. We compare duckweeds compositions with some of the most common food sources and conclude that duckweed, which is already in use as food in Asia, can be an interesting food source anywhere in the world.

Hide Abstract
Safety Information
Symbol : GHS08
Signal Word : Danger
Hazard Statements : H334
Precautionary Statements : P261, P284, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
Amyloglucosidase Aspergillus niger E-AMGDF
Amyloglucosidase (Aspergillus niger)
Fructanase Mixture powder E-FRMXPD
Fructanase Mixture (powder)
Fructanase Mixture liquid E-FRMXLQ
Fructanase Mixture (liquid)
D-Glucose Assay Kit GOPOD Format K-GLUC GLUC
D-Glucose Assay Kit (GOPOD Format)
Phytase Assay Kit K-PHYTASE PHYTASE
Phytase Assay Kit
Isoamylase Flavobacterium odoratum E-ISAMYFO
Isoamylase (Glycogen 6-glucanohydrolase) (Flavobacterium odoratum)
alpha-Amylase Thermostable Bacillus sp. E-BSTAA
α-Amylase (Thermostable) (Bacillus sp.)
Xylan Beechwood P-XYLNBE
Xylan (Beechwood)