The product has been successfully added to your shopping list.

α-Amylase (Bacillus licheniformis)

Product code: E-BLAAM-40ML



40 mL - 3000 Units/mL

Prices exclude VAT

Available for shipping

North American customers click here
Content: 10 mL - 3,000 Units/mL or
40 mL - 3,000 Units/mL or
100 mL - 3,000 Units/mL or
100 mL - 750 Units/mL (ANKOM)
Shipping Temperature: Ambient
Storage Temperature: 2-8oC
Formulation: Stabilised solution
Physical Form: Solution
Stability: > 4 years at 4oC
Enzyme Activity: α-Amylase
EC Number:
CAZy Family: GH13
CAS Number: 9000-90-2,
Synonyms: alpha-amylase; 4-alpha-D-glucan glucanohydrolase
Source: Bacillus licheniformis
Molecular Weight: 58,000
Expression: Purified from Bacillus licheniformis
Specificity: endo-hydrolysis of α-1,4-D-glucosidic linkages in starch.
Specific Activity: ~ 55 U/mg (40oC, pH 6.5 on Ceralpha reagent)
Unit Definition: One Unit of α-amylase is the amount of enzyme required to release one µmole of p-nitrophenol from blocked p-nitrophenyl-maltoheptaoside per minute (in the presence of excess α-glucosidase) at pH 6.0 and 40oC.
Temperature Optima: 75oC
pH Optima: 6.5
Application examples: For use in Megazyme Dietary Fiber methods.
Method recognition: EBC Method 6.5

The E-BLAAM-10ML pack size has been discontinued (read more).

High purity α-Amylase (Bacillus licheniformis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

For use in Megazyme Dietary Fiber methods, suitable for use at pH 6.5 and above.

E-BLAAM-A-100mL specifically to be used with ANKOMTDF Dietary Fiber Analyzer.

Data booklets for each pack size are located in the Documents tab.

We offer other α-amylase in our list of Carbohydrate Active enZYme products.

Megazyme publication

Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products.

McCleary, B. V., McLoughlin, C., Charmier, L. M. J. & McGeough, P. (2019). Cereal Chemistry, 97(1), 114-137.

Background and objectives: The importance of selectively measuring available and unavailable carbohydrates in the human diet has been recognized for over 100 years. The levels of available carbohydrates in diets can be directly linked to major diseases of the Western world, namely Type II diabetes and obesity. Methodology for measurement of total carbohydrates by difference was introduced in the 1880s, and this forms the basis of carbohydrate determination in the United States. In the United Kingdom, a method to directly measure available carbohydrates was introduced in the 1920s to assist diabetic patients with food selection. The aim of the current work was to develop simple, specific, and reliable methods for available carbohydrates and digestible starch (and resistant starch). The major component of available carbohydrates in most foods is digestible starch. Findings: Simple methods for the measurement of rapidly digested starch, slowly digested starch, total digestible starch, resistant starch, and available carbohydrates have been developed, and the digestibility of phosphate cross‐linked starch has been studied in detail. The resistant starch procedure developed is an update of current procedures and incorporates incubation conditions with pancreatic α‐amylase (PAA) and amyloglucosidase (AMG) that parallel those used AOAC Method 2017.16 for total dietary fiber. Available carbohydrates are measured as glucose, fructose, and galactose, following complete and selective hydrolysis of digestible starch, maltodextrins, maltose, sucrose, and lactose to glucose, fructose, and galactose. Sucrose is hydrolyzed with a specific sucrase enzyme that has no action on fructo‐oligosaccharides (FOS). Conclusions: The currently described “available carbohydrates” method together with the total dietary fiber method (AOAC Method 2017.16) allows the measurement of all carbohydrates in food products, including digestible starch. Significance and novelty: This paper describes a simple and specific method for measurement of available carbohydrates in cereal, food, and feed products. This is the first method that provides the correct measurement of digestible starch and sucrose in the presence of FOS. Such methodology is essential for accurate labeling of food products, allowing consumers to make informed decisions in food selection.

Hide Abstract
Megazyme publication

Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study.

McCleary, B. V., McNally, M., Monaghan, D. & Mugford, D. C. (2002). Journal of AOAC International, 85(5), 1096-1102.

This study was conducted to evaluate the method performance of a rapid procedure for the measurement of α-amylase activity in flours and microbial enzyme preparations. Samples were milled (if necessary) to pass a 0.5 mm sieve and then extracted with a buffer/salt solution, and the extracts were clarified and diluted. Aliquots of diluted extract (containing α-amylase) were incubated with substrate mixture under defined conditions of pH, temperature, and time. The substrate used was nonreducing end-blocked p-nitrophenyl maltoheptaoside (BPNPG7) in the presence of excess quantities of thermostable α-glucosidase. The blocking group in BPNPG7 prevents hydrolysis of this substrate by exo-acting enzymes such as amyloglucosidase, α-glucosidase, and β-amylase. When the substrate is cleaved by endo-acting α-amylase, the nitrophenyl oligosaccharide is immediately and completely hydrolyzed to p-nitrophenol and free glucose by the excess quantities of α-glucosidase present in the substrate mixture. The reaction is terminated, and the phenolate color developed by the addition of an alkaline solution is measured at 400 nm. Amylase activity is expressed in terms of Ceralpha units; 1 unit is defined as the amount of enzyme required to release 1 µmol p-nitrophenyl (in the presence of excess quantities of α-glucosidase) in 1 min at 40°C. In the present study, 15 laboratories analyzed 16 samples as blind duplicates. The analyzed samples were white wheat flour, white wheat flour to which fungal α-amylase had been added, milled malt, and fungal and bacterial enzyme preparations. Repeatability relative standard deviations ranged from 1.4 to 14.4%, and reproducibility relative standard deviations ranged from 5.0 to 16.7%.

Hide Abstract
Megazyme publication
New developments in the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase.

McCleary, B. V. & Monaghan, D. (2000). “Proceedings of the Second European Symposium on Enzymes in Grain Processing”, (M. Tenkanen, Ed.), VTT Information Service, pp. 31-38.

Over the past 8 years, we have been actively involved in the development of simple and reliable assay procedures, for the measurement of enzymes of interest to the cereals and related industries. In some instances, different procedures have been developed for the measurement of the same enzyme activity (e.g. α-amylase) in a range of different materials (e.g. malt, cereal grains and fungal preparations). The reasons for different procedures may depend on several factors, such as the need for sensitivity, ease of use, robustness of the substrate mixture, or the possibility for automation. In this presentation, we will present information on our most up-to-date procedures for the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase, with special reference to the use of particular assay formats in particular applications.

Hide Abstract
Megazyme publication
An improved enzymic method for the measurement of starch damage in wheat flour.

Gibson, T. S., Al Qalla, H. & McCleary, B. V. (1992). Journal of Cereal Science, 15(1), 15-27.

An improved enzymic method for the determination of starch damage in wheat flour has been developed and characterized. The proposed method is simple and reliable, and enables up to 20 samples to be measured in duplicate in 2 h. A single assay takes approximately 40 min. The assay protocol is in two phases. In the first, the flour sample is incubated with purified fungal alpha-amylase to liberate damaged starch granules as soluble oligosaccharides. After centrifugation, the oligosaccharides in the supernatant are hydrolysed by amyloglucosidase to glucose in phase 2. The glucose is then quantified with a glucose oxidase/peroxidase reagent. The proposed method therefore avoids potential errors associated with existing standard assays, which employ unpurified amylase preparations and non-specific reducing group methods to quantify the hydrolytic products. Despite the use of purified assay components, the proposed starch damage method did not exhibit an absolute end-point to the action of alpha-amylase in phase 1. This was due to a low rate of hydrolysis of undamaged granules, and is a feature of enzymic methods for starch damage determination. Other amylolytic enzymes, including beta-amylase, isoamylase and pullulanase, and combinations of these enzymes, were evaluated as alternatives to alpha-amylase in the proposed method. These enzymes, when used alone, gave no benefits over the use of alpha-amylase. When used in combination with alpha-amylase, there was a synergistic action on undamaged granules. A test kit based on the assay format described in this paper is the subject of an international interlaboratory evaluation.

Hide Abstract
Megazyme publication
A new procedure for the measurement of fungal and bacterial α-amylase.

Sheehan, H. & McCleary, B. V. (1988). Biotechnology Techniques, 2(4), 289-292.

A procedure for the measurement of fungal and bacterial α-amylase in crude culture filtrates and commercial enzyme preparations is described. The procedure employs end-blocked (non-reducing end) p-nitrophenyl maltoheptaoside in the presence of amyloglucosidase and α-glucosidase, and is absolutely specific for α-amylase. The assay procedure is simple, reliable and accurate.

Hide Abstract
Megazyme publication

Measurement of cereal α-Amylase: A new assay procedure.

McCleary, B. V. & Sheehan, H. (1987). Journal of Cereal Science, 6(3), 237-251.

A new procedure for the assay of cereal α-amylase has been developed. The substrate is a defined maltosaccharide with an α-linked nitrophenyl group at the reducing end of the chain, and a chemical blocking group at the non-reducing end. The substrate is completely resistant to attack by β-amylase, glucoamylase and α-glucosidase and thus forms the basis of a highly specific assay for α-amylase. The reaction mixture is composed of the substrate plus excess quantities of α-glucosidase and glucoamylase. Nitrophenyl-maltosaccharides released on action of α-amylase are instantaneously cleaved to glucose plus free p-nitrophenol by the glucoamylase and α-glucosidase, such that the rate of release of p-nitrophenol directly correlates with α-amylase activity. The assay procedure shows an excellent correlation with the Farrand, the Falling Number and the Phadebas α-amylase assay procedures.

Hide Abstract

Bioprocessing of Shrimp Waste Using Novel Industrial By-Products: Effects on Nutrients and Lipophilic Antioxidants.

Cabanillas-Bojórquez, L. A., Gutiérrez-Grijalva, E. P., Castillo-López, R. I., Contreras-Angulo, L. A., Angulo-Escalante, M. A., López-Martínez, L. X., Rios-Iribe, E. Y. & Heredia, J. B. (2021). Fermentation, 7(4), 312.

The production of marine foods is on the rise, and shrimp is one of the most widely consumed. As a result, a considerable amount of shrimp waste is generated, becoming a hazardous problem. Shrimp waste is a rich source of added-value components such as proteins, lipids, chitin, minerals, and carotenoids; however, new bioprocesses are needed to obtain these components. This work aimed to characterize the chemical and nutraceutical constituents from the liquor of shrimp waste recovered during a lactic acid fermentation process using the novel substrate sources whey and molasses. Our results showed that the lyophilized liquor is a rich source of proteins (25.40 ± 0.67%), carbohydrates (38.92 ± 0.19%), minerals (calcium and potassium), saturated fatty acids (palmitic, stearic, myristic and lauric acids), unsaturated fatty acids (oleic acid, linoleic, and palmitoleic acids), and astaxanthin (0.50 ± 0.02 µg astaxanthin/g). Moreover, fermentation is a bioprocess that allowed us to obtain antioxidants such as carotenoids with an antioxidant capacity of 154.43 ± 4.73 µM Trolox equivalent/g evaluated by the ABTS method. Our study showed that liquor from shrimp waste fermentation could be a source of nutraceutical constituents with pharmaceutical applications. However, further studies are needed to separate these added-value components from the liquor matrix.

Hide Abstract

Rice with Multilayer Aleurone: A Larger Sink for Multiple Micronutrients.

Yu, R., Wu, X., Liu, J., Howitt, C. A., Bird, A. R., Liu, C. M. & Larkin, P. J. (2021). Rice, 14(1), 1-18.

Diet-related noncommunicable diseases impose a heavy burden on human health worldwide. Rice is a good target for diet-related disease prevention strategies because it is widely consumed. Liu et al. demonstrated that increasing the number of cell layers and thickness of putative aleurone in ta2-1 (thick aleurone 2-1) mutant rice enhances simultaneously the content of multiple micronutrients. However, the increases of aleurone-associated nutrients were not proportional to the increases in the aleurone thickness. In this study, first, cytohistological analyses and transmission electron microscopy demonstrated that the multilayer in ta2-1 exhibited aleurone cell structural features. Second, we detected an increase in insoluble fibre and insoluble bound-phenolic compounds, a shift in aleurone-specific neutral non-starch polysaccharide profile, enhancement of phytate and minerals such as iron, zinc, potassium, magnesium, sulphur, and manganese, enrichment of triacylglycerol and phosphatidylcholine but slight reduction in free fatty acid, and an increase in oleic fatty acid composition. These findings support our hypothesis that the expanded aleurone-like layers in ta2-1 maintained some of the distinctive aleurone features and composition. We provide perspectives to achieve even greater filling of this expanded micronutrient sink to provide a means for multiple micronutrient enhancements in rice.

Hide Abstract

Inhibition Effect of Extract of Psychotria viridiflora Stem on α-Amylase and α-Glucosidase and Its Application in Lowering the Digestibility of Noodles.

Chen, Q., Toy, J. Y. H., Seta, C., Yeo, T. C. & Huang, D. (2021). Frontiers in Nutrition, 8, 701114.

A collection of tropical medicinal plants from East Malaysia's rainforests are used by indigenous tribes for their curative properties. Despite their purported healing properties, these forest plant species are largely unexplored and hence remain virtually unknown to the outside world. In this study, antidiabetic properties of Psychotria viridiflora, a plant used to treat diabetes by a local community in Sarawak, Malaysia were investigated. Ethyl acetate (EA) extract of P. viridiflora stem was found to exhibit high starch hydrolase inhibition activity with an IC50 value of 15.4 ± 2.1 μg/ml against porcine α-amylase and an IC50 value of 32.4 ± 3.7 μg/ml against rat intestinal α-glucosidase. A complex mixture of A-type oligomeric proanthocyanidins containing (epi)fisetinidol, (epi)afzelechin, (epi)guibourtinidol, and (epi)catechin were found. These compounds may be responsible for the starch hydrolase inhibition activity. Ethyl acetate (EA) extract of P. viridiflora stem was incorporated into wheat and rice flour to reformulate noodles with slow digestibility and was assessed under in vitro simulated gastrointestinal conditions. A dose-dependent effect on digestibility was observed for both noodles upon incorporation of 1-6% (w/w) of EA extract, with noodles containing 6% (w/w) extract exhibiting the greatest reduction in digestibility. As compared to rice noodles containing 6% extract (31.16% inhibition), wheat noodles with the same extract concentration had a smaller decline in digestibility (27.25% inhibition) after 180 min. Overall, our findings highlight the potential of P. viridiflora in the prevention of postprandial hyperglycaemia.

Hide Abstract

The effect of sugarcane straw aging in the field on cell wall composition.

Pagliuso, D., Grandis, A., De Sousa, C. R., De Souza, A. P., Driemeier, C. & Buckeridge, M. S. (2021). Frontiers in plant science, 819.

Cellulosic ethanol is an alternative for increasing the amount of bioethanol production in the world. In Brazil, sugarcane leads the bioethanol production, and to improve its yield, besides bagasse, sugarcane straw is a possible feedstock. However, the process that leads to cell wall disassembly under field conditions is unknown, and understanding how this happens can improve sugarcane biorefinery and soil quality. In the present work, we aimed at studying how sugarcane straw is degraded in the field after 3, 6, 9, and 12 months. Non-structural and structural carbohydrates, lignin content, ash, and cellulose crystallinity were analyzed. The cell wall composition was determined by cell wall fractionation and determination of monosaccharide composition. Non-structural carbohydrates degraded quickly during the first 3 months in the field. Pectins and lignin remained in the plant waste for up to 12 months, while the hemicelluloses and cellulose decreased 7.4 and 12.4%, respectively. Changes in monosaccharide compositions indicated solubilization of arabinoxylan (xylose and arabinose) and β-glucans (β-1,3 1,4 glucan; after 3 months) followed by degradation of cellulose (after 6 months). Despite cellulose reduction, the xylose:glucose ratio increased, suggesting that glucose is consumed faster than xylose. The degradation and solubilization of the cell wall polysaccharides concomitantly increased the level of compounds related to recalcitrance, which led to a reduction in saccharification and an increase in minerals and ash contents. Cellulose crystallinity changed little, with evidence of silica at the latter stages, indicating mineralization of the material. Our data suggest that for better soil mineralization, sugarcane straw must stay in the field for over 1 year. Alternatively, for bioenergy purposes, straw should be used in less than 3 months.

Hide Abstract

Defined shear and heat treatment of apple pomace: impact on dietary fiber structures and functional properties.

Schmid, V., Trabert, A., Keller, J., Bunzel, M., Karbstein, H. P. & Emin, M. A. (2021). European Food Research and Technology, 247(8), 2109-2122.

Food by-products can be modified by extrusion processing. However, the impact of thermal and mechanical stress, respectively, on the structure and thus functional properties of dietary fiber-rich food by-products is still unknown. In the extrusion process, thermal and mechanical stress are coupled, not constant, and difficult to measure or calculate. Thus, their influence on structural changes and functional properties cannot be evaluated separately. In this work, a specific shear cell, denoted by closed cavity rheometer, was used to treat apple pomace with defined thermal and/or mechanical stress. Dietary fiber composition and fiber polysaccharide structures appeared to be more susceptible to high temperatures than mechanical stress. With increasing temperature (and mechanical stress) soluble and low-molecular-weight soluble dietary fiber contents increased, whereas insoluble fiber contents decreased. Arabinans as rhamnogalacturonan type I polysaccharides and galacturonic acid containing pectic polysaccharides were identified as being most susceptible to degradation under these conditions. Furthermore, the defined treatment affected the functional properties. Although changes in the water solubility index (WSI) and/or the water absorption index (WAI) were not detected up to 90°C, WSI and WAI decreased significantly at a treatment temperature of 120°C. However, at very high temperatures (160°C), WSI and WAI increased. The application of shear and longer treatment times resulted in higher WSI values and complex viscosities as compared to low shear stress.

Hide Abstract

Effect of different fermentation condition on estimated glycemic Index, In Vitro starch digestibility, and textural and sensory properties of sourdough bread.

Demirkesen-Bicak, H., Arici, M., Yaman, M., Karasu, S. & Sagdic, O. (2021). Foods, 10(3), 514.

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25°C and 30°C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25°C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8-78.94 and 62.10-78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30°C using type-2 (29.74%). The 30°C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.

Hide Abstract

A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties.

Gómez-García, R., Campos, D. A., Oliveira, A., Aguilar, C. N., Madureira, A. R. & Pintado, M. (2020). Food Chemistry, 335, 127579.

The goal of this work was to characterize the profile of bioactive compounds and the antioxidant activity of inodorus melon peels. Melon peels were divided into three fractions: a solid fraction with a higher content of carbohydrates (84.81%); a liquid fraction with a higher ash content (11.5%); and a pellet fraction with a higher protein content (34.90%). The structural carbohydrates study revealed a composition of cellulose (27.68%), hemicellulose (8.2%) and lignin (26.46%) in the solid fraction. The liquid fraction had the highest antioxidant activity based on results from DPPH, ABTS and ORAC assays. Flavones, hydroxybenzoic and hydroxycinnamic acids were the main phenolic classes found in all fractions. In addition, β-carotene, lutein, β-cryptoxanthin and violaxanthin had also been quantified. Melon fractions were rich in nutrients and bioactive substances and could be useful in the development of novel functional products, considering the growing market demand for safe and healthy food products.

Hide Abstract

Cell wall architecture as well as chemical composition determines fermentation of wheat cell walls by a faecal inoculum.

Lu, S., Flanagan, B. M., Williams, B. A., Mikkelsen, D. & Gidley, M. J. (2020). Food Hydrocolloids, 107, 105858.

Grain cell walls are a common component of the human diet, and an important source of dietary fibre. They primarily consist of a cellulose matrix incorporating arabinoxylan (AX) and mixed linkage (1, 3)(1, 4)-β-glucan (MLG). In this study, cell walls isolated from wheat flour (WCW) were compared with a physical mixture (Mix) of the major WCW polysaccharides (AX, MLG and cellulose) in the proportions found in WCW. WCW, Mix and the individual polysaccharides were subjected to in vitro fermentation for 48 h with a porcine fecal inoculum. Each constituent in Mix was fermented to a similar extent as single-component substrates, indicated by the total amount of gas and short chain fatty acid (SCFA) produced. However, WCW showed a slower production of gas and SCFA and slower degradation of its non-cellulosic polysaccharides. This suggests that the architecture of WCW plays a critical role in determining the rate of fecal microbial fermentation.

Hide Abstract

A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: whole grains, processed in bread, and population‐level intake implications.

Van Boxstael, F., Aerts, H., Linssen, S., Latré, J., Christiaens, A., Haesaert, G., Dierickx, I., Brusselle, J. & De Keyzer, W. (2020). Journal of the Science of Food and Agriculture, 100(11), 4108-4118.

Background: Interest in alternatives to the traditional wheat Triticum aestivum among farmers, millers, bakers, and consumers is increasing. The Altergrain project aimed to compare the Belgian‐soil cultivated Einkorn (1K), Emmer (EMM), Khorasan (KH), and modern wheat (MW) with respect to nutritional values of kernels, breads made from these cereals, and population‐level nutrient intake implications. Results: Ancient wheats 1K, EMM, and KH contain lower total carbohydrate content than MW. Further, ancient wheats are higher in both protein and crude ash content. Vitamin E levels in breads prepared using 1K and EMM were higher than those in MW, but those prepared from KH had lower vitamin E levels than MW. Breads prepared using ancient wheats have higher total phenol content (TPC) than those from MW. Baking caused a decrease in vitamin E and TPC in bread prepared from ancient wheat, the exception being the one prepared using KH, which had a higher TPC than MW. When replacing bread made from MW with those made from ancient grains, no differences were observed with respect to conformance with the Belgian Recommend Daily Requirements. Conclusions: Ancient wheats from Belgian soil are as nutritive as MWs even after being processed into bread. At the kernel level, nutritional differences are present, but only small differences are present in terms of nutritional intake when nutrition parameters are calculated for consumed bread.

Hide Abstract

Cell Wall Compositional Analysis of Rice Culms.

Zhang, L., Zhang, B. & Zhou, Y. (2019). Bio-Protocol, 9(20), e3398.

The plant cell wall is a complicated network that is mainly constituted of polysaccharides, such as cellulose, hemicellulose and pectin. Many noncellulosic polysaccharides are further acetylated, which confers these polymers flexible physicochemical properties. Due to the significance of cell wall in plant growth and development, the analytic platform has been the focus for a long time. Here, we use internodes/culms, an important organ to provide mechanical support for rice plants, as an experimental sample to explore the method for cell wall composition analysis. The method includes preparation of cell wall residues, sequential extraction of polysaccharides, and measurement of cellulose. The procedure for acetate examination is also described. This method is applicable to determine the composition of individual cell wall polymers and the modifier acetates, and is suitable to identify cell wall relevant mutants based on the advantages in high throughput, precision and repeatability.

Hide Abstract

Profiling Cell Wall Monosaccharides and Nucleotide‐Sugars from Plants.

Rautengarten, C., Heazlewood, J. L. & Ebert, B. (2019). Current protocols in Plant Biology, 4(2), e20092.

The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion‐exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non‐cellulosic monosaccharide composition of the cell wall.

Hide Abstract

Varietal differences in the effect of rice ageing on starch digestion.

Azizi, R., Capuano, E., Nasirpour, A., Pellegrini, N., Golmakani, M. T., Hosseini, S. M. H. & Farahnaky, A. (2019). Food Hydrocolloids, 95, 358-366.

The purpose of this study was to provide, for the first time, a comprehensive account of the potential effects of storage (37°C) on physicochemical properties and digestion behaviour of three highly consumed Iranian rice varieties (Hashemi, Domsiyah and Gohar). After ageing, the content of thiol groups was significantly reduced only in the case of Hashemi. The ageing process did not significantly change the rate and extent of starch digestion in Gohar and Domsiyah, but a clear reduction was observed in Hashemi. The results suggested that the changes in peptide subunit composition contribute to the potential efficiency of ageing for controlling rice digestion behaviour. This study suggests that varietal differences may play a major role in the effectiveness of ageing in modifying rice physicochemical properties and starch digestion dynamics. The results also indicated that starch digestibility didn't follow amylose content level and suggests the importance of other components on rice digestibility.

Hide Abstract
Safety Information
Symbol : GHS08
Signal Word : Danger
Hazard Statements : H334
Precautionary Statements : P261, P284, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
Amyloglucosidase Aspergillus niger E-AMGDF
Amyloglucosidase (Aspergillus niger)
Protease Subtilisin A from Bacillus licheniformis E-BSPRT
Protease (Subtilisin A from Bacillus licheniformis)
Total Dietary Fiber Assay Kit K-TDFR TDFR
Total Dietary Fiber Assay Kit
alpha-Amylase Aspergillus oryzae E-ANAAM
α-Amylase (Aspergillus oryzae)
alpha-Amylase Porcine Pancreatic E-PANAA
α-Amylase (Porcine Pancreatic)
D-Glucose Assay Kit GOPOD Format K-GLUC GLUC
D-Glucose Assay Kit (GOPOD Format)
Total Starch Assay Kit AA/AMG K-TSTA TSTA
Total Starch Assay Kit (AA/AMG)
BIS-TRIS Buffer salt B-BISTRIS250
TRIS Buffer Salt