The product has been successfully added to your shopping list.

α-Amylase Assay Kit (Ceralpha Method)

Play Training Video
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Introduction
Chapter 2: Theory of the Analytical Procedure
Chapter 3: Kit Content
Chapter 4: Reagent Preparation
Chapter 5: Milling of Samples
Chapter 6: Weighing of Malt Samples & Extraction of Alpha Amylase
Chapter 7: Weighing of Wheat & Barley Flour & Extraction of Alpha Amylase
Chapter 8: Extraction/Dilution of Microbial Enzyme
Chapter 9: Assay Procedure
Chapter 10: Calculations
alpha-Amylase Assay Kit Ceralpha Method K-CERA Scheme
Product code: K-CERA

100 / 200 assays per kit

Prices exclude VAT

Available for shipping

North American customers click here
Content: 100 / 200 assays per kit
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: α-Amylase
Assay Format: Spectrophotometer, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 400
Signal Response: Increase
Limit of Detection: 0.05 U/mL
Reproducibility (%): ~ 3%
Total Assay Time: ~ 30 min
Application examples: Cereal flours, fermentation broths and other materials.
Method recognition: AACC Method 22-02.01, AOAC Method 2002.01, ICC Standard No. 303, RACI Standard Method and CCFRA (Flour Testing Working Group Method 0018)

The Ceralpha Method: α-Amylase test kit is suitable for the specific measurement and analysis of α-amylase in cereal grains and fermentation broths (fungal and bacterial).

Browse the complete list of our enzyme activity assay kits.

Scheme-K-CERA CERA Megazyme

  • Very cost effective 
  • All reagents stable for > 2 years after preparation 
  • Very specific 
  • Simple format 
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included
Validation of Methods
Megazyme publication

Diastatic power and maltose value: a method for the measurement of amylolytic enzymes in malt.

Charmier, L. M., McLoughlin, C. & McCleary, B. V. (2021). Journal of the Institute of Brewing, In Press.

A simple method for measurement of the amylolytic activity of malt has been developed and fully evaluated. The method, termed the Maltose Value (MV) is an extension of previously reported work. Here, the MV method has been studied in detail and all aspects of the assay (sample grinding and extraction, starch hydrolysis, maltose hydrolysis and determination as glucose) have been optimised. The method is highly correlated with other dextrinising power methods. The MV method involves extraction of malt in 0.5% sodium chloride at 30°C for 20 minutes followed by filtration; incubation of an aliquot of the undiluted filtrate with starch solution (pH 4.6) at 30°C for 15 min; termination of reaction with sodium hydroxide solution; dilution of sample in an appropriate buffer; hydrolysis of maltose with a specific α-glucosidase; glucose determination and activity calculation. Unlike all subsequent reducing sugar methods, the maltose value method measures a defined reaction product, maltose, with no requirement to use equations to relate analytical values back to Lintner units. The maltose value method is the first viable method in 130 years that could effectively replace the 1886 Lintner method.

Hide Abstract
Megazyme publication

Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07.

McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.

Background: The level of available carbohydrates in our diet is directly linked to two major diseases; obesity and Type II diabetes. Despite this, to date there is no method available to allow direct and accurate measurement of available carbohydrates in human and animal foods. Objective: The aim of this research was to develop a method that would allow simple and accurate measurement of available carbohydrates, defined as non-resistant starch, maltodextrins, maltose, isomaltose, sucrose, lactose, glucose, fructose and galactose. Method: Non-resistant (digestible) starch is hydrolysed to glucose and maltose by pancreatic α-amylase and amyloglucosidase at pH 6.0 with shaking or stirring at 37°C for 4 h. Sucrose, lactose, maltose and isomaltose are completely hydrolyzed by specific enzymes to their constituent monosaccharides, which are then measured using pure enzymes in a single reaction cuvette. Results: A method has been developed that allows the accurate measurement of available carbohydrates in all cereal, vegetable, fruit, food, and feed products, including dairy products. Conclusions: A single-laboratory validation was performed on a wide range of food and feed products. The inter-day repeatability (%RSDr) was <3.58% (w/w) across a range of samples containing 44.1 to 88.9% available carbohydrates. The LOD and LOQ obtained were 0.054% (w/w) and 0.179% (w/w), respectively. The method is all inclusive, specific, robust and simple to use. Highlights: A unique method has been developed for the direct measurement of available carbohydrates, entailing separate measurement of glucose, fructose and galactose; information of value in determining the glycemic index of foods.

Hide Abstract
Megazyme publication

Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products.

McCleary, B. V., McLoughlin, C., Charmier, L. M. J. & McGeough, P. (2019). Cereal Chemistry, 97(1), 114-137.

Background and objectives: The importance of selectively measuring available and unavailable carbohydrates in the human diet has been recognized for over 100 years. The levels of available carbohydrates in diets can be directly linked to major diseases of the Western world, namely Type II diabetes and obesity. Methodology for measurement of total carbohydrates by difference was introduced in the 1880s, and this forms the basis of carbohydrate determination in the United States. In the United Kingdom, a method to directly measure available carbohydrates was introduced in the 1920s to assist diabetic patients with food selection. The aim of the current work was to develop simple, specific, and reliable methods for available carbohydrates and digestible starch (and resistant starch). The major component of available carbohydrates in most foods is digestible starch. Findings: Simple methods for the measurement of rapidly digested starch, slowly digested starch, total digestible starch, resistant starch, and available carbohydrates have been developed, and the digestibility of phosphate cross‐linked starch has been studied in detail. The resistant starch procedure developed is an update of current procedures and incorporates incubation conditions with pancreatic α‐amylase (PAA) and amyloglucosidase (AMG) that parallel those used AOAC Method 2017.16 for total dietary fiber. Available carbohydrates are measured as glucose, fructose, and galactose, following complete and selective hydrolysis of digestible starch, maltodextrins, maltose, sucrose, and lactose to glucose, fructose, and galactose. Sucrose is hydrolyzed with a specific sucrase enzyme that has no action on fructo‐oligosaccharides (FOS). Conclusions: The currently described “available carbohydrates” method together with the total dietary fiber method (AOAC Method 2017.16) allows the measurement of all carbohydrates in food products, including digestible starch. Significance and novelty: This paper describes a simple and specific method for measurement of available carbohydrates in cereal, food, and feed products. This is the first method that provides the correct measurement of digestible starch and sucrose in the presence of FOS. Such methodology is essential for accurate labeling of food products, allowing consumers to make informed decisions in food selection.

Hide Abstract
Megazyme publication

Prediction of potential malt extract and beer filterability using conventional and novel malt assays.

Cornaggia, C., Evans, D. E., Draga, A., Mangan, D. & McCleary, B. V. (2019). Journal of Institute of Brewing, 125(3), 294-309.

Colourimetric assays were used to measure the activities of six key hydrolases endogenous to barley: β‐glucanase, xylanase, cellulase, α-amylase, beta‐amylase and limit dextrinase. The analysed barley malt samples were previously characterised by 27 conventional malt quality descriptors. Correlations between enzymatic activities and brewing parameters such as extract yield, fermentability, viscosity and filterability were investigated. A single extraction protocol for all six hydrolases was optimised and used for multi‐enzyme analysis using fully automatable assay formats. A regression analysis between malt parameters was undertaken to produce a relationship matrix linking enzyme activities and conventional malt quality descriptors. This regression analysis was used to inform a multi‐linear regression approach to create predictive models for extract yield, apparent attenuation limit, viscosity and filterability using the Small‐scale Wort rapId Filtration Test (SWIFT) and two different mashing protocols – Congress and a modified infusion mash at 65oC (MIM 65oC). It was observed that malt enzyme activities displayed significant correlations with the analysed brewing parameters. Both starch hydrolases and cell wall hydrolase activities together with modification parameters (i.e. Kolbach index) were found to be highly correlated with extract yield and apparent attenuation limit. Interestingly, it was observed that xylanase activity in malts was an important predictor for wort viscosity and filterability. It is envisaged that the automatable measurement of enzyme activity could find use in plant breeding progeny selection and for routine assessment of the functional brewing performance of malt batches. This analytical approach would also contribute to brewing process consistency, product quality and reduced processing times.

Hide Abstract
Megazyme publication

Measurement of Starch: Critical evaluation of current methodology.

McCleary, B. V., Charmier, L. M. J. & McKie, V. A. (2018). Starch‐Stärke, 71(1-2), 1800146.

Most commonly used methods for the measurement of starch in food, feeds and ingredients employ the combined action of α‐amylase and amyloglucosidase to hydrolyse the starch to glucose, followed by glucose determination with a glucose oxidase/peroxidase reagent. Recently, a number of questions have been raised concerning possible complications in starch analytical methods. In this paper, each of these concerns, including starch hydrolysis, isomerisation of maltose to maltulose, effective hydrolysis of maltodextrins by amyloglucosidase, enzyme purity and hydrolysis of sucrose and β‐glucans have been studied in detailed. Results obtained for a range of starch containing samples using AOAC Methods 996.11 and 2014 .10 are compared and a new simpler format for starch measurement is introduced. With this method that employs a thermostable α-amylase (as distinct from a heat stable α-amylase) which is both stable and active at 100°C and pH 5.0, 10 samples can be analysed within 2 h, as compared to the 6 h required with AOAC Method 2014.10.

Hide Abstract
Megazyme publication

Measurement of α-Amylase in Cereal, Food and Fermentation Products.

McCleary, B. V. & Sturgeon, R. (2002). Cereal Foods World, 47, 299-310.

In General, the development of methods for measuring α-amylase is pioneered in the clinical chemistry field and then translated to other industries, such as the cereals and fermentation industries. In many instances, this transfer of technology has been difficult or impossible to achieve due to the presence of interfering enzymes or sugars and to differences in the properties of the enzymes being analysed. This article describes many of the commonly used methods for measuring α-amylase in the cereals, food, and fermentation industries and discusses some of the advantages and limitations of each.

Hide Abstract
Megazyme publication

Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study.

McCleary, B. V., McNally, M., Monaghan, D. & Mugford, D. C. (2002). Journal of AOAC International, 85(5), 1096-1102.

This study was conducted to evaluate the method performance of a rapid procedure for the measurement of α-amylase activity in flours and microbial enzyme preparations. Samples were milled (if necessary) to pass a 0.5 mm sieve and then extracted with a buffer/salt solution, and the extracts were clarified and diluted. Aliquots of diluted extract (containing α-amylase) were incubated with substrate mixture under defined conditions of pH, temperature, and time. The substrate used was nonreducing end-blocked p-nitrophenyl maltoheptaoside (BPNPG7) in the presence of excess quantities of thermostable α-glucosidase. The blocking group in BPNPG7 prevents hydrolysis of this substrate by exo-acting enzymes such as amyloglucosidase, α-glucosidase, and β-amylase. When the substrate is cleaved by endo-acting α-amylase, the nitrophenyl oligosaccharide is immediately and completely hydrolyzed to p-nitrophenol and free glucose by the excess quantities of α-glucosidase present in the substrate mixture. The reaction is terminated, and the phenolate color developed by the addition of an alkaline solution is measured at 400 nm. Amylase activity is expressed in terms of Ceralpha units; 1 unit is defined as the amount of enzyme required to release 1 µmol p-nitrophenyl (in the presence of excess quantities of α-glucosidase) in 1 min at 40°C. In the present study, 15 laboratories analyzed 16 samples as blind duplicates. The analyzed samples were white wheat flour, white wheat flour to which fungal α-amylase had been added, milled malt, and fungal and bacterial enzyme preparations. Repeatability relative standard deviations ranged from 1.4 to 14.4%, and reproducibility relative standard deviations ranged from 5.0 to 16.7%.

Hide Abstract
Megazyme publication

Analysis of feed enzymes.

McCleary, B. V. (2001). “Enzymes in Farm Animal Nutrition”, (M. Bedford and G. Partridge, Eds.), CAB International, pp. 85-107.

Enzymes are added to animal feed to increase its digestibility, to remove anti-nutritional factors, to improve the availability of components, and for environment reasons (Campbell and Bedford, 1992; Walsh et al., 1993). A wide-variety of carbohydrase, protease, phytase and lipase enzymes find use in animal feeds. In monogastric diets, enzyme activity must be sufficiently high to allow for the relatively short transit time. Also, the enzyme employed must be able to resist unfavourable conditions that may be experienced in feed preparation (e.g. extrusion and pelleting) and that exist in the gastrointestinal tract. Measurement of trace levels of enzymes in animal feed mixtures is difficult. Independent of the enzyme studied, many of the problems experienced are similar; namely, low levels of activity, extraction problems inactivation during feed preparation, non-specific binding to other feed components and inhibition by specific feed-derived inhibitors, e.g. specific xylanase inhibitors in wheat flour (Debyser et al., 1999).

Hide Abstract
Megazyme publication
A new procedure for the measurement of fungal and bacterial α-amylase.

Sheehan, H. & McCleary, B. V. (1988). Biotechnology Techniques, 2(4), 289-292.

A procedure for the measurement of fungal and bacterial α-amylase in crude culture filtrates and commercial enzyme preparations is described. The procedure employs end-blocked (non-reducing end) p-nitrophenyl maltoheptaoside in the presence of amyloglucosidase and α-glucosidase, and is absolutely specific for α-amylase. The assay procedure is simple, reliable and accurate.

Hide Abstract
Megazyme publication

Measurement of cereal α-Amylase: A new assay procedure.

McCleary, B. V. & Sheehan, H. (1987). Journal of Cereal Science, 6(3), 237-251.

A new procedure for the assay of cereal α-amylase has been developed. The substrate is a defined maltosaccharide with an α-linked nitrophenyl group at the reducing end of the chain, and a chemical blocking group at the non-reducing end. The substrate is completely resistant to attack by β-amylase, glucoamylase and α-glucosidase and thus forms the basis of a highly specific assay for α-amylase. The reaction mixture is composed of the substrate plus excess quantities of α-glucosidase and glucoamylase. Nitrophenyl-maltosaccharides released on action of α-amylase are instantaneously cleaved to glucose plus free p-nitrophenol by the glucoamylase and α-glucosidase, such that the rate of release of p-nitrophenol directly correlates with α-amylase activity. The assay procedure shows an excellent correlation with the Farrand, the Falling Number and the Phadebas α-amylase assay procedures.

Hide Abstract

Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant.

Sheteiwy, M. S., AbdElgawad, H., Xiong, Y. C., Macovei, A., Brestic, M., Skalicky, M., Shanhaleh, H., Hamound, Y. A. & El‐Sawah, A. M. (2021). Physiologia Plantarum, 172(4), 2153-2169.

The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and β-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also increased by the inoculation.

Hide Abstract

Impact of exogenous maltogenic α-amylase and maltotetraogenic amylase on sugar release in wheat bread.

Rebholz, G. F., Sebald, K., Dirndorfer, S., Dawid, C., Hofmann, T. & Scherf, K. A. (2021). European Food Research and Technology, 247(6), 1425-1436.

The use of exogenous maltogenic α-amylases or maltotetraogenic amylases of bacterial origin is common in wheat bread production, mainly as antistaling agents to retard crumb firming. To study the impact of maltogenic α-amylase and maltotetraogenic amylase on straight dough wheat bread, we performed a discovery-driven proteomics approach with commercial enzyme preparations and identified the maltotetraogenic amylase P22963 from Pelomonas saccharophila and the maltogenic α-amylase P19531 from Geobacillus stearothermophilus, respectively, as being responsible for the amylolytic activity. Quantitation of mono-, di- and oligosaccharides and residual amylase activity in bread crumb during storage for up to 96 h clarified the different effects of residual amylase activity on the sugar composition. Compared to the control, the application of maltogenic α-amylase led to an increased content of maltose and especially higher maltooligosaccharides during storage. Residual amylase activity was detectable in the breads containing maltogenic α-amylase, whereas maltotetraogenic amylase only had a very low residual activity. Despite the residual amylase activities and changes in sugar composition detected in bread crumb, our results do not allow a definite evaluation of a potential technological function in the final product. Rather, our study contributes to a fundamental understanding of the relation between the specific amylases applied, their residual activity and the resulting changes in the saccharide composition of wheat bread during storage.

Hide Abstract

The H+-pyrophosphatase IbVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato.

Fan, W., Zhang, Y., Wu, Y., Zhou, W., Yang, J., Yuan, L., Zhang, P. & Wang, H. (2021).  Horticulture Research, 8(1), 1-12.

Storage roots of sweet potato are important sink organs for photoassimilates and energy, and carbohydrate metabolism in storage roots affects yield and starch production. Our previous study showed that sweet potato H+-pyrophosphatase (IbVP1) plays a vital role in mitigating iron deficiency and positively controls fibrous root growth. However, its roles in regulating starch production in storage roots have not been investigated. In this study, we found that IbVP1 overexpression in sweet potato improved the photosynthesis ability of and sucrose content in source leaves and increased both the starch content in and total yield of sink tissues. Using 13C-labeled sucrose feeding, we determined that IbVP1 overexpression promotes phloem loading and sucrose long-distance transport and enhances Pi-use efficiency. In sweet potato plants overexpressing IbVP1, the expression levels of starch biosynthesis pathway genes, especially AGPase and GBSSI, were upregulated, leading to changes in the structure, composition, and physicochemical properties of stored starch. Our study shows that the IbVP1 gene plays an important role in regulating starch metabolism in sweet potato. Application of the VP1 gene in genetic engineering of sweet potato cultivars may allow the improvement of starch production and yield under stress or nutrient-limited conditions.

Hide Abstract

Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities.

Neoh, G. K., Dieters, M. J., Tao, K., Fox, G. P., Nguyen, P. & Gilbert, R. G. (2021). Foods, 10(2), 201.

When wheat experiences a cold-temperature ‘shock’ during the late stage of grain filling, it triggers the abnormal synthesis of late-maturity α-amylase (LMA). This increases the enzyme content in affected grain, which can lead to a drastic reduction in falling number (FN). By commercial standards, a low FN is taken as an indication of inferior quality, deemed unsuitable for end-product usage. Hence, LMA-affected grains are either rejected or downgraded to feed grade at the grain receiving point. However, previous studies have found no substantial correlation between low FN-LMA and bread quality. The present study extends previous investigations to semi-solid food, evaluating the physical quality of fresh white sauce processed from LMA-affected flour. Results show that high-LMA flours had low FNs and exhibited poor pasting characteristics. However, gelation occurred in the presence of other components during fresh white sauce processing. This demonstrates that LMA-affected flours may have new applications in low-viscosity products.

Hide Abstract

Influence of the addition of different ingredients on the bioaccessibility of glucose released from rice during dynamic in vitro gastrointestinal digestion.

Fernandes, J. M., Madalena, D. A., Vicente, A. A. & Pinheiro, A. C. (2021). International Journal of Food Sciences and Nutrition, 72(1), 45-56.

Rice represents a primary source of carbohydrates in human nutrition. Upon its consumption, the released sugars are mostly absorbed, categorising rice as a high glycemic index food. Addition of ingredients is common practice when cooking rice, which may affect rice digestibility and influence nutrients absorption in the gastrointestinal (GI) tract, enabling a controlled glucose release. In this sense, rice formulations were submitted to a dynamic in vitro GI model, constituted by reactors that simulates peristalsis coupled to filtration membranes, to evaluate carbohydrates hydrolysis and bioaccessibility. Addition of quinoa and wholegrains reduced carbohydrates hydrolysis (i.e. 38.5 ± 5.08% and 57.98 ± 1.91%, respectively) and glucose bioaccessibility (i.e. 25.92 ± 5.70% and 42.56 ± 1.39%, respectively) when compared with brown rice (i.e. 63.86 ± 2.96% hydrolysed and 44.33 ± 1.88% absorbed). Addition of vegetables significantly decreased sample chewiness and resulted in superior hydrolysis (71.75 ± 7.44%) and glucose absorption (51.61 ± 6.25%).

Hide Abstract

Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering.

Li, Y. T., Chen, M. S., Deng, L. Z., Liang, Y. Z., Liu, Y. K., Liu, W., Chen, J. & Liu, C. M. (2021). Journal of Food Engineering, 291, 110228.

Whole soybean milk (WSM) was prepared by an innovatively created industry-scale microfluidizer system (ISMS). Results showed WSM prepared by ISMS (WSMM) at 60, 90 and 120 MPa kept stable spontaneously for 21 days at 4°C, while the one prepared by traditional method (WSMT) stratified on day 14. The aggregation of oil droplets and proteins during storage caused the increase of particle sizes of WSMT, while WSMM showed little change in the form and distribution of oil droplets and proteins, as well as particle sizes. The smaller size, looser microstructure of dietary fiber and higher viscosity of WSMM also contributed to the stability of WSMM. WSMM prepared at 90 and 120 MPa exhibited higher isoflavone contents (0.92 and 1.03 mg/g) than those of WSMT (0.89 mg/g). This research suggested that the ISMS was feasible in producing the WSM with superior stability and nutrition.

Hide Abstract

Impact of cultivar and growing conditions on Alpha‐Amylase Properties in Wheat.

Aljabi, H. R. & Pawelzik, E. (2020). Starch‐Stärke, 2000032.

Alpha amylase (α‐amylase) is an endo‐amylolytic enzyme that plays an important role in the starch metabolism in developing wheat grains. However, excessive enzyme activity in post‐harvest wheat grains has adverse effects on grain quality. Therefore, the objective of the study is to determine the influence of cultivars with different growth habits (spring vs winter) and weather conditions on the characterization of native α‐amylase. The results show that winter wheat cultivar (cv.) Cubus show a lower α‐amylase activity than those of spring wheat cv. Amaretto, by escaping the humid weather before harvest. Grains exposed to higher temperatures in Gladebeck have lower enzyme activity in the later stages of ripening than the grains in Torland. On the other hand, wheat α‐amylases from both cultivars have similar properties. They show thermal inactivation at 30°C and acid lability at increasing pH values. The results indicate that a better understanding of the α‐amylase properties could be helpful to develop a suitable management to avoid quality losses in wheat.

Hide Abstract

Exploring diverse sorghum (Sorghum bicolor (L.) Moench) accessions for malt amylase activity.

Disharoon, A., Boyles, R., Jordan, K. & Kresovich, S. (2020).  Journal of the Institute of Brewing, In Press.

Sorghum is a climate resilient grain cereal crop originating from Africa that has traditionally been used to make a variety of fermented beverages such as pito and baijiu. In Western markets, the use of sorghum to produce beers and beverages has recently risen due to the visibility of a gluten sensitive/intolerant market and a growing interest in unique inputs for beverage production. As such, there is a developing body of research on sorghum as a malted input into beverages. A major limitation to the wider adoption of sorghum as a substrate in mashing is its low activity of amylolytic enzymes, either the result of insufficient activity or inhibition by endogenous compounds. A collection of 42 diverse accessions representing the grain sorghum diversity panel, was evaluated for associations between alpha and beta amylase content, race, origin, and seed colour as well as two classes of amylase inhibitors, phenols and tannins. Among these accessions are several commonly used genetic resources, including reference line BTx623. Notable findings include accessions with high alpha amylase content, sources that may harbour additional high amylase sorghums, associations with grain colour, and populations which may be used to genetically map the trait.

Hide Abstract

Effect of hatching time on time to first feed intake, organ development, enzymatic activity and growth in broiler chicks hatched on-farm.

Boyner, M., Ivarsson, E., Franko, M. A., Rezaei, M. & Wall, H. (2020). Animal, 100083.

The conventional commercial hatcheries used today do not allow the newly hatched chicks to consume feed or water. Combined with natural variation in hatching time, this can lead to early hatched chicks being feed-deprived for up to 72 h before being unloaded at the rearing site. This study investigated the effects of hatching time on time to first feed intake and development of organs, digestive enzymes and productivity in terms of growth and feed conversion ratio in chicks hatched on-farm. Chicks were divided into three hatching groups (early, mid-term and late), and assessed over a full production cycle of 34 days. The results revealed that chicks remain inactive for a considerable amount of time before engaging in eating-related activities. Eating activity of 5% (i.e. when 5% of birds in each hatching group were eating or standing close to the feeder) was recorded at an average biological age (BA) of 25.4 h and a proportion of 50% birds with full crop was reached at an average BA of 30.6 h. Considering that the hatching window was 35 h in this study, the average chick probably did not benefit from access to feed and water immediately post-hatch in this case. At hatch, mid-term hatchlings had a heavier small intestine (30.1 g/kg bw) than both early (26.4 g/kg bw) and late (26.0 g/kg bw) hatchlings. Relative length of the small intestine was shorter in late hatchlings (735 cm/kg bw) than in mid-term (849 cm/kg bw) and early (831 cm/kg bw) hatchlings. However, the relative weight of the bursa fabricii was greater in mid-term (1.30 g/kg bw) than in early hatchlings (1.01 g/kg bw). At hatch, late hatchlings were heavier than early and mid-term hatchlings (P < 0.05), but by 3 days of age early hatchlings were heavier than mid-term and late hatchlings (P < 0.01). The only effect persisting throughout the study was a difference in the relative weight of the small intestine, where late hatchlings had heavier intestines than early hatchlings (P < 0.05). Thus, while there were differences between hatching groups, this study showed that the hatchlings seemed capable of compensating for these as they grew.

Hide Abstract

A New Approach for Glutinous Rice Breeding through Dull Genes Pyramiding.

Lee, J. Y., Kang, J. W., Jo, S. M., Kwon, Y., Lee, S. M., Shin, D. J., Song, Y-C., Park, D. S., Lee, J-H., Ko,J-M. & Cho, J. H. (2020). Plant Breeding and Biotechnology, 8(4), 405-412.

Glutinous rice is a key grain quality trait occupying an important part during rice processing in most rice growing areas. In this study, a gene pyramiding approach was used to introduce two dull genes, responsible for low amylose content, for glutinous rice breeding using marker assisted selection (MAS). The genotyping results revealed that rice cultivar Milyang319 carries both dull genes on chromosome 6, derived from cv. Milky-queen (Wx-mq) and cv. LGS-soft (du12(t)), respectively. Milyang319 had a significantly low amylose content (9.0%) compared to those observed in donor parents Milky-queen (15.7%) and LGS-soft (14.5%). In addition, the amylogram analysis of Milyang319 showed a similar pattern of glutinous rice. Originally, Milyang319 had a low hardness and more stickiness compared to those recorded in cooked rice of both dull parental lines. Therefore, Milyang319 is proposed as a promising candidate rice cultivar that could be used as a new source of waxy germplasms with same physicochemical features of glutinous rice in further breeding programs.

Hide Abstract

Starch hydrolysis during mashing: A study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase.

De Schepper, C. F., Michiels, P., Buvé, C., Van Loey, A. M. & Courtin, C. M. (2020). Carbohydrate Polymers, 117494.

Hydrolysis of starch is key in several industrial processes, including brewing. Here, the activity and inactivation kinetics of amylases throughout barley malt mashing are investigated, as a prerequisite for rational optimisation of this process. Varietal differences were observed in the activity of α- and β-amylases as a function of temperature for six barley and malt varieties. These differences were not reflected in the resulting wort composition after mashing, using three isothermal phases of 30 min at 45°C, 62°C and 72°C with intermediate heating by 1°C/min. Thermal inactivation kinetics parameters determined for α- and β-amylases of an industrially relevant malt variety in a diluted system showed that enzymes were inactivated at lower temperatures than expected. The obtained kinetic parameters could predict α-amylase, but not β-amylase inactivation in real mashing conditions, suggesting that β-amylase stability is enhanced during mashing by components present or formed in the mash.

Hide Abstract
Safety Information
Symbol : GHS07
Signal Word : Warning
Hazard Statements : H315, H319, H335
Precautionary Statements : P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P337+P313
Safety Data Sheet
Customers also viewed
beta-Amylase Assay Betamyl-3 K-BETA3 BETA3
β-Amylase Assay Kit (Betamyl-3)
alpha-Amylase Reagent Ceralpha R-CAAR4
α-Amylase Reagent (Ceralpha)
alpha-Amylase HR Reagent R-AMHR4
α-Amylase HR Reagent
Protazyme AK Tablets T-PRAK
Protazyme AK Tablets
Phytic Acid Assay Kit K-PHYT PHYT
Phytic Acid Assay Kit
Amylazyme Tablets T-AMZ
Amylazyme Tablets
Total Dietary Fiber Assay Kit K-TDFR TDFR
Total Dietary Fiber Assay Kit
Azo-Wheat Arabinoxylan Powder S-AWAXP
Azo-Wheat Arabinoxylan (Powder)