The product has been successfully added to your shopping list.

α-Amylase Assay Kit (Ceralpha Method)

Play Training Video

00:01    Introduction
00:16    Theory of the Analytical Procedure
01:08    Kit Content
01:37     Reagent Preparation
04:44    Milling of Samples
05:40    Weighing of Malt Samples & Extraction of Alpha Amylase
09:12     Weighing of Wheat & Barley Flour & Extraction of Alpha Amylase
11:31       Extraction/Dilution of Microbial Enzyme preparations
14:16      Assay Procedure
17:59      Calculations

alpha-Amylase Assay Kit Ceralpha Method K-CERA Scheme
   
Product code: K-CERA
€241.00

100 / 200 assays per kit

Prices exclude VAT

Available for shipping

North American customers click here
Content: 100 / 200 assays per kit
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: α-Amylase
Assay Format: Spectrophotometer, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 400
Signal Response: Increase
Limit of Detection: 0.05 U/mL
Reproducibility (%): ~ 3%
Total Assay Time: ~ 30 min
Application examples: Cereal flours, fermentation broths and other materials.
Method recognition: AACC Method 22-02.01, AOAC Method 2002.01, ICC Standard No. 303, RACI Standard Method and CCFRA (Flour Testing Working Group Method 0018)

The Ceralpha Method: α-Amylase test kit is suitable for the specific measurement and analysis of α-amylase in cereal grains and fermentation broths (fungal and bacterial).

Browse the complete list of our enzyme activity assay kits.

Scheme-K-CERA CERA Megazyme

Advantages
  • Very cost effective 
  • All reagents stable for > 2 years after preparation 
  • Very specific 
  • Simple format 
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included
Validation of Methods
Publications
Megazyme publication

Diastatic power and maltose value: a method for the measurement of amylolytic enzymes in malt.

Charmier, L. M., McLoughlin, C. & McCleary, B. V. (2021). Journal of the Institute of Brewing, In Press.

A simple method for measurement of the amylolytic activity of malt has been developed and fully evaluated. The method, termed the Maltose Value (MV) is an extension of previously reported work. Here, the MV method has been studied in detail and all aspects of the assay (sample grinding and extraction, starch hydrolysis, maltose hydrolysis and determination as glucose) have been optimised. The method is highly correlated with other dextrinising power methods. The MV method involves extraction of malt in 0.5% sodium chloride at 30°C for 20 minutes followed by filtration; incubation of an aliquot of the undiluted filtrate with starch solution (pH 4.6) at 30°C for 15 min; termination of reaction with sodium hydroxide solution; dilution of sample in an appropriate buffer; hydrolysis of maltose with a specific α-glucosidase; glucose determination and activity calculation. Unlike all subsequent reducing sugar methods, the maltose value method measures a defined reaction product, maltose, with no requirement to use equations to relate analytical values back to Lintner units. The maltose value method is the first viable method in 130 years that could effectively replace the 1886 Lintner method.

Hide Abstract
Megazyme publication

Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit and related food products and animal feeds: First Action 2020.07.

McCleary, B. V. & McLoughlin, C. (2021). Journal of AOAC International, qsab019.

Background: The level of available carbohydrates in our diet is directly linked to two major diseases; obesity and Type II diabetes. Despite this, to date there is no method available to allow direct and accurate measurement of available carbohydrates in human and animal foods. Objective: The aim of this research was to develop a method that would allow simple and accurate measurement of available carbohydrates, defined as non-resistant starch, maltodextrins, maltose, isomaltose, sucrose, lactose, glucose, fructose and galactose. Method: Non-resistant (digestible) starch is hydrolysed to glucose and maltose by pancreatic α-amylase and amyloglucosidase at pH 6.0 with shaking or stirring at 37°C for 4 h. Sucrose, lactose, maltose and isomaltose are completely hydrolyzed by specific enzymes to their constituent monosaccharides, which are then measured using pure enzymes in a single reaction cuvette. Results: A method has been developed that allows the accurate measurement of available carbohydrates in all cereal, vegetable, fruit, food, and feed products, including dairy products. Conclusions: A single-laboratory validation was performed on a wide range of food and feed products. The inter-day repeatability (%RSDr) was <3.58% (w/w) across a range of samples containing 44.1 to 88.9% available carbohydrates. The LOD and LOQ obtained were 0.054% (w/w) and 0.179% (w/w), respectively. The method is all inclusive, specific, robust and simple to use. Highlights: A unique method has been developed for the direct measurement of available carbohydrates, entailing separate measurement of glucose, fructose and galactose; information of value in determining the glycemic index of foods.

Hide Abstract
Megazyme publication

Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products.

McCleary, B. V., McLoughlin, C., Charmier, L. M. J. & McGeough, P. (2019). Cereal Chemistry, 97(1), 114-137.

Background and objectives: The importance of selectively measuring available and unavailable carbohydrates in the human diet has been recognized for over 100 years. The levels of available carbohydrates in diets can be directly linked to major diseases of the Western world, namely Type II diabetes and obesity. Methodology for measurement of total carbohydrates by difference was introduced in the 1880s, and this forms the basis of carbohydrate determination in the United States. In the United Kingdom, a method to directly measure available carbohydrates was introduced in the 1920s to assist diabetic patients with food selection. The aim of the current work was to develop simple, specific, and reliable methods for available carbohydrates and digestible starch (and resistant starch). The major component of available carbohydrates in most foods is digestible starch. Findings: Simple methods for the measurement of rapidly digested starch, slowly digested starch, total digestible starch, resistant starch, and available carbohydrates have been developed, and the digestibility of phosphate cross‐linked starch has been studied in detail. The resistant starch procedure developed is an update of current procedures and incorporates incubation conditions with pancreatic α‐amylase (PAA) and amyloglucosidase (AMG) that parallel those used AOAC Method 2017.16 for total dietary fiber. Available carbohydrates are measured as glucose, fructose, and galactose, following complete and selective hydrolysis of digestible starch, maltodextrins, maltose, sucrose, and lactose to glucose, fructose, and galactose. Sucrose is hydrolyzed with a specific sucrase enzyme that has no action on fructo‐oligosaccharides (FOS). Conclusions: The currently described “available carbohydrates” method together with the total dietary fiber method (AOAC Method 2017.16) allows the measurement of all carbohydrates in food products, including digestible starch. Significance and novelty: This paper describes a simple and specific method for measurement of available carbohydrates in cereal, food, and feed products. This is the first method that provides the correct measurement of digestible starch and sucrose in the presence of FOS. Such methodology is essential for accurate labeling of food products, allowing consumers to make informed decisions in food selection.

Hide Abstract
Megazyme publication

Prediction of potential malt extract and beer filterability using conventional and novel malt assays.

Cornaggia, C., Evans, D. E., Draga, A., Mangan, D. & McCleary, B. V. (2019). Journal of Institute of Brewing, 125(3), 294-309.

Colourimetric assays were used to measure the activities of six key hydrolases endogenous to barley: β‐glucanase, xylanase, cellulase, α-amylase, beta‐amylase and limit dextrinase. The analysed barley malt samples were previously characterised by 27 conventional malt quality descriptors. Correlations between enzymatic activities and brewing parameters such as extract yield, fermentability, viscosity and filterability were investigated. A single extraction protocol for all six hydrolases was optimised and used for multi‐enzyme analysis using fully automatable assay formats. A regression analysis between malt parameters was undertaken to produce a relationship matrix linking enzyme activities and conventional malt quality descriptors. This regression analysis was used to inform a multi‐linear regression approach to create predictive models for extract yield, apparent attenuation limit, viscosity and filterability using the Small‐scale Wort rapId Filtration Test (SWIFT) and two different mashing protocols – Congress and a modified infusion mash at 65oC (MIM 65oC). It was observed that malt enzyme activities displayed significant correlations with the analysed brewing parameters. Both starch hydrolases and cell wall hydrolase activities together with modification parameters (i.e. Kolbach index) were found to be highly correlated with extract yield and apparent attenuation limit. Interestingly, it was observed that xylanase activity in malts was an important predictor for wort viscosity and filterability. It is envisaged that the automatable measurement of enzyme activity could find use in plant breeding progeny selection and for routine assessment of the functional brewing performance of malt batches. This analytical approach would also contribute to brewing process consistency, product quality and reduced processing times.

Hide Abstract
Megazyme publication

Measurement of Starch: Critical evaluation of current methodology.

McCleary, B. V., Charmier, L. M. J. & McKie, V. A. (2018). Starch‐Stärke, 71(1-2), 1800146.

Most commonly used methods for the measurement of starch in food, feeds and ingredients employ the combined action of α‐amylase and amyloglucosidase to hydrolyse the starch to glucose, followed by glucose determination with a glucose oxidase/peroxidase reagent. Recently, a number of questions have been raised concerning possible complications in starch analytical methods. In this paper, each of these concerns, including starch hydrolysis, isomerisation of maltose to maltulose, effective hydrolysis of maltodextrins by amyloglucosidase, enzyme purity and hydrolysis of sucrose and β‐glucans have been studied in detailed. Results obtained for a range of starch containing samples using AOAC Methods 996.11 and 2014 .10 are compared and a new simpler format for starch measurement is introduced. With this method that employs a thermostable α-amylase (as distinct from a heat stable α-amylase) which is both stable and active at 100°C and pH 5.0, 10 samples can be analysed within 2 h, as compared to the 6 h required with AOAC Method 2014.10.

Hide Abstract
Megazyme publication

Measurement of α-Amylase in Cereal, Food and Fermentation Products.

McCleary, B. V. & Sturgeon, R. (2002). Cereal Foods World, 47, 299-310.

In General, the development of methods for measuring α-amylase is pioneered in the clinical chemistry field and then translated to other industries, such as the cereals and fermentation industries. In many instances, this transfer of technology has been difficult or impossible to achieve due to the presence of interfering enzymes or sugars and to differences in the properties of the enzymes being analysed. This article describes many of the commonly used methods for measuring α-amylase in the cereals, food, and fermentation industries and discusses some of the advantages and limitations of each.

Hide Abstract
Megazyme publication

Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study.

McCleary, B. V., McNally, M., Monaghan, D. & Mugford, D. C. (2002). Journal of AOAC International, 85(5), 1096-1102.

This study was conducted to evaluate the method performance of a rapid procedure for the measurement of α-amylase activity in flours and microbial enzyme preparations. Samples were milled (if necessary) to pass a 0.5 mm sieve and then extracted with a buffer/salt solution, and the extracts were clarified and diluted. Aliquots of diluted extract (containing α-amylase) were incubated with substrate mixture under defined conditions of pH, temperature, and time. The substrate used was nonreducing end-blocked p-nitrophenyl maltoheptaoside (BPNPG7) in the presence of excess quantities of thermostable α-glucosidase. The blocking group in BPNPG7 prevents hydrolysis of this substrate by exo-acting enzymes such as amyloglucosidase, α-glucosidase, and β-amylase. When the substrate is cleaved by endo-acting α-amylase, the nitrophenyl oligosaccharide is immediately and completely hydrolyzed to p-nitrophenol and free glucose by the excess quantities of α-glucosidase present in the substrate mixture. The reaction is terminated, and the phenolate color developed by the addition of an alkaline solution is measured at 400 nm. Amylase activity is expressed in terms of Ceralpha units; 1 unit is defined as the amount of enzyme required to release 1 µmol p-nitrophenyl (in the presence of excess quantities of α-glucosidase) in 1 min at 40°C. In the present study, 15 laboratories analyzed 16 samples as blind duplicates. The analyzed samples were white wheat flour, white wheat flour to which fungal α-amylase had been added, milled malt, and fungal and bacterial enzyme preparations. Repeatability relative standard deviations ranged from 1.4 to 14.4%, and reproducibility relative standard deviations ranged from 5.0 to 16.7%.

Hide Abstract
Megazyme publication

Analysis of feed enzymes.

McCleary, B. V. (2001). “Enzymes in Farm Animal Nutrition”, (M. Bedford and G. Partridge, Eds.), CAB International, pp. 85-107.

Enzymes are added to animal feed to increase its digestibility, to remove anti-nutritional factors, to improve the availability of components, and for environment reasons (Campbell and Bedford, 1992; Walsh et al., 1993). A wide-variety of carbohydrase, protease, phytase and lipase enzymes find use in animal feeds. In monogastric diets, enzyme activity must be sufficiently high to allow for the relatively short transit time. Also, the enzyme employed must be able to resist unfavourable conditions that may be experienced in feed preparation (e.g. extrusion and pelleting) and that exist in the gastrointestinal tract. Measurement of trace levels of enzymes in animal feed mixtures is difficult. Independent of the enzyme studied, many of the problems experienced are similar; namely, low levels of activity, extraction problems inactivation during feed preparation, non-specific binding to other feed components and inhibition by specific feed-derived inhibitors, e.g. specific xylanase inhibitors in wheat flour (Debyser et al., 1999).

Hide Abstract
Megazyme publication
A new procedure for the measurement of fungal and bacterial α-amylase.

Sheehan, H. & McCleary, B. V. (1988). Biotechnology Techniques, 2(4), 289-292.

A procedure for the measurement of fungal and bacterial α-amylase in crude culture filtrates and commercial enzyme preparations is described. The procedure employs end-blocked (non-reducing end) p-nitrophenyl maltoheptaoside in the presence of amyloglucosidase and α-glucosidase, and is absolutely specific for α-amylase. The assay procedure is simple, reliable and accurate.

Hide Abstract
Megazyme publication

Measurement of cereal α-Amylase: A new assay procedure.

McCleary, B. V. & Sheehan, H. (1987). Journal of Cereal Science, 6(3), 237-251.

A new procedure for the assay of cereal α-amylase has been developed. The substrate is a defined maltosaccharide with an α-linked nitrophenyl group at the reducing end of the chain, and a chemical blocking group at the non-reducing end. The substrate is completely resistant to attack by β-amylase, glucoamylase and α-glucosidase and thus forms the basis of a highly specific assay for α-amylase. The reaction mixture is composed of the substrate plus excess quantities of α-glucosidase and glucoamylase. Nitrophenyl-maltosaccharides released on action of α-amylase are instantaneously cleaved to glucose plus free p-nitrophenol by the glucoamylase and α-glucosidase, such that the rate of release of p-nitrophenol directly correlates with α-amylase activity. The assay procedure shows an excellent correlation with the Farrand, the Falling Number and the Phadebas α-amylase assay procedures.

Hide Abstract
Publication

Profiling Malt Enzymes Related to Impact on Malt Fermentability, Lautering and Beer Filtration Performance of 94 Commercially Produced Malt Batches.

Evans, D. E., Stewart, S., Stewart, D., Han, Z., Han, Y. & Able, J. A. (2021). Journal of the American Society of Brewing Chemists, 1-14.

A largely defined series of hydrolytic enzymes active during malting and/or mashing, substantially determine the quality, profitability, and efficiency of the brewing process. These enzymes potentially hydrolyze starch, proteins and cell wall non-starch polysaccharides including β-glucan and arabinoxylan. Commercial malts (94) were assayed for the DP enzymes (limit dextrinase, beta/α-amylase), and NSP hydrolyzing enzymes (β-glucanase, xylanase, arabinofuranosidase, β-glucosidase). The levels of enzyme activity were related to conventional measures of malt quality such as extract, fermentability, protein, KI, DP, friability, wort viscosity, FAN, and β-glucan. These parameters were interrelated with less conventional measures of malt quality including coarse extract and fermentability (modified infusion mash 65 °C), lautering efficiency, the Small-scale Wort ‘I’ Filtration Test (SWIFT), and viscosity. Substantial variation was observed between the malt samples for all enzymes assayed. Australian barley, whether malted in Australia (n = 61) or China (n = 24), was observed to be of comparable quality. A limited set of Canadian barley samples (n = 9) were malted in China and produced malts with somewhat higher levels of extract, AAL, and some enzymes. Remarkably, the level of limit dextrinase was observed to be almost double that from previous investigations. Greater levels of steep water aeration were proposed to explain this dramatic increase. The interrelationships between the enzyme activities and malt quality identified, enable potential selection of novel malt quality parameters that are more predictive of a malt’s brewing performance (efficiency and quality) than current measures to provide a malt quality assessment system based on ‘functional’ malt quality.

Hide Abstract
Publication

Late-maturity α-amylase (LMA) testing and its methodological challenges.

Neoh, G. K., Tao, K., Dieters, M. J., Fox, G. P. & Gilbert, R. G. (2021). LWT, 151, 112232.

Wheats affected by late-maturity α-amylase (LMA) contain abnormal amounts of α-amylase with a high isoelectric point (pI), causing their flours to have low falling number (FN), a standard industry test. LMA-affected wheats are often rejected at grain receival points, as low FN is perceived as sign of poor quality. To improve LMA detection and increase screening throughput, an LMA-ELISA has been developed. The present study evaluated the analytical performance of LMA-ELISA and confirmed the correlation between LMA content and enzymatic activity. The LMA-ELISA test demonstrated good discrimination and high precision for intra- and inter-assay measurements. However, results were not reproducible when using three different LMA-ELISA batches acquired in two consecutive years, indicating that LMA-ELISA suffered from batch-to-batch variation. Consistent with previous studies, LMA-ELISA was highly correlated to total α-amylase activity (R = 0.95). LMA-affected flours also had enzymatic activity similar to enzyme-supplemented flours that have been shown to produce some end-products such as bread and noodles that are of satisfactory quality. These results highlight the need to address LMA-ELISA batch-to-batch variation.

Hide Abstract
Publication

Overexpression of a wheat α‐amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination.

Zhang, Q., Pritchard, J., Mieog, J., Byrne, K., Colgrave, M. L., Wang, J. R. & Ral, J. P. F. (2021).. The Plant Journal, 108(20), 378-393.

Despite being of vital importance for seed establishment and grain quality, starch degradation remains poorly understood in organs such as cereal or legume seeds. In cereals, starch degradation requires the synergetic action of different isoforms of α-amylases. Ubiquitous overexpression of TaAmy2 resulted in a 2.0–437.6-fold increase of total α-amylase activity in developing leaf and harvested grains. These increases led to dramatic alterations of starch visco-properties and augmentation of soluble carbohydrate levels (mainly sucrose and α-gluco-oligosaccharide) in grain. Interestingly, the overexpression of TaAMY2 led to an absence of dormancy in ripened grain due to abscisic acid (ABA) insensitivity. Using an allosteric α-amylase inhibitor (acarbose), we demonstrated that ABA insensitivity was due to the increased soluble carbohydrate generated by the α-amylase excess. Independent from the TaAMY2 overexpression, inhibition of α-amylase during germination led to the accumulation of soluble α-gluco-oligosaccharides without affecting the first stage of germination. These findings support the hypotheses that (i) endosperm sugar may overcome ABA signalling and promote sprouting, and (ii) α-amylase may not be required for the initial stage of grain germination, an observation that questions the function of the amylolytic enzyme in the starch degradation process during germination.

Hide Abstract
Publication

Brief Insight into the Underestimated Role of Hop Amylases on Beer Aroma Profiles.

Werrie, P. Y., Deckers, S. & Fauconnier, M. L. (2021). Journal of the American Society of Brewing Chemists, 1-9.

The current trend in craft breweries is to carry out heavy dry-hopping by increasing the hopping rate. This practice sometimes leads to uncontrolled and aberrant aroma profile production. The aim of this work was to determine whether part of the enzymatic content of hop (α-amylase and β-amylase) could impact yeast metabolism, resulting in aroma profile modification during secondary fermentation. In this research, spectrophotometric methods were used to assess the amylase activity within hop. Moreover, liquid chromatographic methods (HPLC-ELSD) showed modification of the beer sugar profile by production of glucose and maltose as well as by the degradation of a higher degree of polymerization sugar by hop enzymes. Furthermore, gas chromatographic techniques (GC-ECD/FID) were used to assess yeast metabolism using vicinal diketones (diacetyl/pentanedione) as a marker of the secondary fermentation. Finally, a principal component analysis (PCA) of the yeast main aromas (esters, higher alcohols, and aldehydes) demonstrated the significance of this yeast-hop interaction on the beer’s aroma profile.

Hide Abstract
Publication

Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant.

Sheteiwy, M. S., AbdElgawad, H., Xiong, Y. C., Macovei, A., Brestic, M., Skalicky, M., Shanhaleh, H., Hamound, Y. A. & El‐Sawah, A. M. (2021). Physiologia Plantarum, 172(4), 2153-2169.

The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and β-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also increased by the inoculation.

Hide Abstract
Publication

Impact of exogenous maltogenic α-amylase and maltotetraogenic amylase on sugar release in wheat bread.

Rebholz, G. F., Sebald, K., Dirndorfer, S., Dawid, C., Hofmann, T. & Scherf, K. A. (2021). European Food Research and Technology, 247(6), 1425-1436.

The use of exogenous maltogenic α-amylases or maltotetraogenic amylases of bacterial origin is common in wheat bread production, mainly as antistaling agents to retard crumb firming. To study the impact of maltogenic α-amylase and maltotetraogenic amylase on straight dough wheat bread, we performed a discovery-driven proteomics approach with commercial enzyme preparations and identified the maltotetraogenic amylase P22963 from Pelomonas saccharophila and the maltogenic α-amylase P19531 from Geobacillus stearothermophilus, respectively, as being responsible for the amylolytic activity. Quantitation of mono-, di- and oligosaccharides and residual amylase activity in bread crumb during storage for up to 96 h clarified the different effects of residual amylase activity on the sugar composition. Compared to the control, the application of maltogenic α-amylase led to an increased content of maltose and especially higher maltooligosaccharides during storage. Residual amylase activity was detectable in the breads containing maltogenic α-amylase, whereas maltotetraogenic amylase only had a very low residual activity. Despite the residual amylase activities and changes in sugar composition detected in bread crumb, our results do not allow a definite evaluation of a potential technological function in the final product. Rather, our study contributes to a fundamental understanding of the relation between the specific amylases applied, their residual activity and the resulting changes in the saccharide composition of wheat bread during storage.

Hide Abstract
Publication

The H+-pyrophosphatase IbVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato.

Fan, W., Zhang, Y., Wu, Y., Zhou, W., Yang, J., Yuan, L., Zhang, P. & Wang, H. (2021).  Horticulture Research, 8(1), 1-12.

Storage roots of sweet potato are important sink organs for photoassimilates and energy, and carbohydrate metabolism in storage roots affects yield and starch production. Our previous study showed that sweet potato H+-pyrophosphatase (IbVP1) plays a vital role in mitigating iron deficiency and positively controls fibrous root growth. However, its roles in regulating starch production in storage roots have not been investigated. In this study, we found that IbVP1 overexpression in sweet potato improved the photosynthesis ability of and sucrose content in source leaves and increased both the starch content in and total yield of sink tissues. Using 13C-labeled sucrose feeding, we determined that IbVP1 overexpression promotes phloem loading and sucrose long-distance transport and enhances Pi-use efficiency. In sweet potato plants overexpressing IbVP1, the expression levels of starch biosynthesis pathway genes, especially AGPase and GBSSI, were upregulated, leading to changes in the structure, composition, and physicochemical properties of stored starch. Our study shows that the IbVP1 gene plays an important role in regulating starch metabolism in sweet potato. Application of the VP1 gene in genetic engineering of sweet potato cultivars may allow the improvement of starch production and yield under stress or nutrient-limited conditions.

Hide Abstract
Publication

Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities.

Neoh, G. K., Dieters, M. J., Tao, K., Fox, G. P., Nguyen, P. & Gilbert, R. G. (2021). Foods, 10(2), 201.

When wheat experiences a cold-temperature ‘shock’ during the late stage of grain filling, it triggers the abnormal synthesis of late-maturity α-amylase (LMA). This increases the enzyme content in affected grain, which can lead to a drastic reduction in falling number (FN). By commercial standards, a low FN is taken as an indication of inferior quality, deemed unsuitable for end-product usage. Hence, LMA-affected grains are either rejected or downgraded to feed grade at the grain receiving point. However, previous studies have found no substantial correlation between low FN-LMA and bread quality. The present study extends previous investigations to semi-solid food, evaluating the physical quality of fresh white sauce processed from LMA-affected flour. Results show that high-LMA flours had low FNs and exhibited poor pasting characteristics. However, gelation occurred in the presence of other components during fresh white sauce processing. This demonstrates that LMA-affected flours may have new applications in low-viscosity products.

Hide Abstract
Publication

Influence of the addition of different ingredients on the bioaccessibility of glucose released from rice during dynamic in vitro gastrointestinal digestion.

Fernandes, J. M., Madalena, D. A., Vicente, A. A. & Pinheiro, A. C. (2021). International Journal of Food Sciences and Nutrition, 72(1), 45-56.

Rice represents a primary source of carbohydrates in human nutrition. Upon its consumption, the released sugars are mostly absorbed, categorising rice as a high glycemic index food. Addition of ingredients is common practice when cooking rice, which may affect rice digestibility and influence nutrients absorption in the gastrointestinal (GI) tract, enabling a controlled glucose release. In this sense, rice formulations were submitted to a dynamic in vitro GI model, constituted by reactors that simulates peristalsis coupled to filtration membranes, to evaluate carbohydrates hydrolysis and bioaccessibility. Addition of quinoa and wholegrains reduced carbohydrates hydrolysis (i.e. 38.5 ± 5.08% and 57.98 ± 1.91%, respectively) and glucose bioaccessibility (i.e. 25.92 ± 5.70% and 42.56 ± 1.39%, respectively) when compared with brown rice (i.e. 63.86 ± 2.96% hydrolysed and 44.33 ± 1.88% absorbed). Addition of vegetables significantly decreased sample chewiness and resulted in superior hydrolysis (71.75 ± 7.44%) and glucose absorption (51.61 ± 6.25%).

Hide Abstract
Publication

Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering.

Li, Y. T., Chen, M. S., Deng, L. Z., Liang, Y. Z., Liu, Y. K., Liu, W., Chen, J. & Liu, C. M. (2021). Journal of Food Engineering, 291, 110228.

Whole soybean milk (WSM) was prepared by an innovatively created industry-scale microfluidizer system (ISMS). Results showed WSM prepared by ISMS (WSMM) at 60, 90 and 120 MPa kept stable spontaneously for 21 days at 4°C, while the one prepared by traditional method (WSMT) stratified on day 14. The aggregation of oil droplets and proteins during storage caused the increase of particle sizes of WSMT, while WSMM showed little change in the form and distribution of oil droplets and proteins, as well as particle sizes. The smaller size, looser microstructure of dietary fiber and higher viscosity of WSMM also contributed to the stability of WSMM. WSMM prepared at 90 and 120 MPa exhibited higher isoflavone contents (0.92 and 1.03 mg/g) than those of WSMT (0.89 mg/g). This research suggested that the ISMS was feasible in producing the WSM with superior stability and nutrition.

Hide Abstract
Safety Information
Symbol : GHS07
Signal Word : Warning
Hazard Statements : H315, H319, H335
Precautionary Statements : P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P337+P313
Safety Data Sheet
Customers also viewed
Total Starch Assay Kit AA/AMG K-TSTA TSTA
Total Starch Assay Kit (AA/AMG)
€164.00
alpha-Amylase HR Reagent R-AMHR4
α-Amylase HR Reagent
€357.00
Phytase Assay Kit K-PHYTASE PHYTASE
Phytase Assay Kit
€318.00
Xylanase Assay Kit XylX6 Method K-XylX6
Xylanase Assay Kit (XylX6 Method)
€225.00
Malt Amylase Assay Kit K-MALTA MALTA
Malt Amylase Assay Kit
€243.00
Cellulase Assay Kit CellG3 Method K-CellG3 CellG3
Cellulase Assay Kit (CellG3 Method)
€348.00
Amyloglucosidase Assay Reagent R-AMGR3
Amyloglucosidase Assay Reagent
€310.00
beta-Amylase Assay Betamyl-3 K-BETA3 BETA3
β-Amylase Assay Kit (Betamyl-3)
€248.00