The product has been successfully added to your shopping list.

Maltopentaose

Maltopentaose O-MAL5
Product code: O-MAL5
€175.00

50 mg

Prices exclude VAT

Available for shipping

North American customers click here
Content: 50 mg
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 10 years under recommended storage conditions
CAS Number: 34620-76-3
Molecular Formula: C30H52O26
Molecular Weight: 828.72
Purity: > 85%
Substrate For (Enzyme): Amyloglucosidase, α-amylase, β-Amylase

High purity Maltopentaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Documents
Certificate of Analysis
Safety Data Sheet
Data Sheet
Publications
Publication

Soluble fibres as sucrose replacers: Effects on physical and sensory properties of sugar-reduced short-dough biscuits.

Rodriguez-Garcia, J., Ding, R., Nguyen, T. H., Grasso, S., Chatzifragkou, A. & Methven, L. (2022). LWT, 167, 113837.

Four different soluble fibres were evaluated as sugar replacers in short dough biscuits: two resistant dextrins (Nutriose® FM06 and Promitor® SGF 70R) and two inulin-derived fibres (Orafti® HSI and Fibruline™ Instant). The degree of polymerisation of the fibres was analysed, and dough viscoelastic properties were assessed. Weight loss during baking, dimensions, textural properties, surface colour and sensory profile were evaluated. Higher degree of polymerisation fibres (e.g. Fibruline) limited water availability for syrup formation, restricting dough expansion and resulting in smaller, more compact, and harder biscuits than control. Biscuits with inulin derived fibres with a lower degree of polymerisation (e.g. Orafti) showed similar dimensions to control biscuits. In general, sucrose reduction gave place to biscuits with lower resistance to penetration and fracture strength due to less sugar recrystallisation in the final biscuit. In contrast, when dextrin-type fibres were used the rheological behaviour of the dough, spreading during baking, and resistance to penetration were similar to the control as the fibres showed an anti-plasticising effect similar to sucrose. However, all reduced sugar biscuits were significantly firmer and crunchier in sensory profile suggesting further optimisation is needed, potentially by modification of the fibre structure or baking method.

Hide Abstract
Publication

Functional characterization of recombinant raw starch degrading α-amylase from Roseateles terrae HL11 and its application on cassava pulp saccharification.

Prongjit, D., Lekakarn, H., Bunterngsook, B., Aiewviriyasakul, K., Sritusnee, W. & Champreda, V. (2022). Catalysts, 12(6), 647.

Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis revealed that HL11Amy was classified into glycoside hydrolase family 13 subfamily 32 (GH13_32). It contains four protein domains consisting of domain A, domain B, domain C and carbohydrate-binding module 20 (CMB20). The enzyme optimally worked at 50°C, pH 4.0 with a specific activity of 6270 U/mg protein and 1030 raw starch-degrading (RSD) U/mg protein against soluble starch. Remarkably, HL11Amy exhibited activity toward both raw and gelatinized forms of various substrates, with the highest catalytic efficiency (kcat/Km) on starch from rice, followed by potato and cassava, respectively. HL11Amy effectively hydrolyzed cassava pulp (CP) hydrolysis, with a reducing sugar yield of 736 and 183 mg/g starch from gelatinized and raw CP, equivalent to 72% and 18% conversion based on starch content in the substrate, respectively. These demonstrated that HL11Amy represents a promising raw starch-degrading enzyme with potential applications in starch modification and cassava pulp saccharification.

Hide Abstract
Publication

The molecular state of gelatinized starch in surplus bread affects bread recycling potential.

Immonen, M., Maina, N. H., Coda, R. & Katina, K. (2021). LWT, 150, 112071.

Surplus bread is a major bakery side stream that should be strictly kept within the human food chain to reduce waste and ensure resource efficiency in baking processes. Optimally, surplus bread should be recycled as a dough ingredient, however, this is known to be detrimental to the volume and texture of bread. The purpose of this study was to investigate how gelatinized starch in surplus bread, untreated or enzymatically hydrolyzed, affects dough development, bread volume and textural attributes. Starch was hydrolyzed to various degrees using commercial α-amylase and amyloglucosidase. Bread hydrolysates containing different carbohydrate profiles (untreated, 75%, 57%, and 26% starch remaining) were evaluated as dough ingredients. More complete starch hydrolysis resulted in better dough visco-elastic properties and higher dough level, and reduced dough water absorption by 13%. Nonetheless, breads containing hydrolysate with high-malto-oligosaccharides had the lowest intrinsic hardness and similar volume yield when compared to control bread. Furthermore, compared to untreated slurry, the hydrolysate with high-malto-oligosaccharides, reduced crumb hardness by 28% and staling rate by 42%, and increased specific volume by 8%. The present findings show that enzymatic hydrolysis dramatically transforms the impact of gelatinized starch. Thus, by selecting correct bioprocessing approaches, bread recycling performance may be significantly improved.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Maltooctaose O-MAL8
Maltooctaose
€210.00
Maltohexaose O-MAL7
Maltoheptaose
€210.00
Maltopentaose O-MAL6
Maltohexaose
€187.00
Maltotriose O-MAL3
Maltotriose
€191.00