The product has been successfully added to your shopping list.

AZCL-Amylose

AZCL-Amylose I-AZAMY
Product code: I-AZAMY
€0.00

5 g

Prices exclude VAT

This product has been discontinued

Content: 5 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 7 years under recommended storage conditions
Substrate For (Enzyme): α-amylase
Assay Format: Spectrophotometer (Semi-quantitative), Petri-dish (Qualitative)
Detection Method: Absorbance
Wavelength (nm): 590

This product has been discontinued (read more).

High purity dyed and crosslinked insoluble AZCL-Amylose for identification of enzyme activities in research, microbiological enzyme assays and in vitro diagnostic analysis.

Dyed and crosslinked amylose. Substrate for the assay of α-amylase.

View our complete list of insoluble chromogenic substrates.

Documents
Certificate of Analysis
Safety Data Sheet
FAQs Application Note Assay Protocol
Publications
Megazyme publication
New chromogenic substrates for the assay of alpha-amylase and (1→4)-β-D-glucanase.

McCleary, B. V. (1980). Carbohydrate Research, 86(1), 97-104.

New chromogenic substrates have been developed for the quantitative assay of alpha-amylase and (1→4)-β-D-glucanase. These were prepared by chemically modifying amylose or cellulose before dyeing, to increase solubility. After dyeing, the substrates were either soluble or could be readily dispersed to form fine, gelatinous suspensions. Assays based on the use of these substrates are sensitive and highly specific for either alpha-amylase or (1→4)-β-D-glucanase. The method of preparation can also be applied to obtain substrates for other endo-hydrolases.

Hide Abstract
Publication

Biochemical and synergistic properties of a novel alpha‐amylase from Chinese nong‐flavor Daqu.

Chen, L., Yi, Z., Fang, Y., Jin, Y., He, K., Xiao, Y., Zhao, D., Luo, H., He, H., Sun, Q. & Zhao, H. (2021). Microbial Cell Factories, 20(1), 1-15.

Background: Daqu is the most important fermentation starter for Chinese liquor, with large number of microbes and enzymes being openly enriched in the Daqu system over thousands of years. However, only a few enzymes have been analyzed with crude protein for total liquefying power and saccharifying power of Daqu. Therefore, the complex enzymatic system present in Daqu has not been completely characterized. Moreover, their pivotal and complicated functions in Daqu are completely unknown. Results: In this study, a novel α-amylase NFAmy13B, from GH13_5 subfamily (according to the Carbohydrate-Active enZYmes Database, CAZy) was successfully heterologous expressed by Escherichia coli from Chinese Nong-flavor (NF) Daqu. It exhibited high stability ranging from pH 5.5 to 12.5, and higher specific activity, compared to other GH13_5 fungal α-amylases. Moreover, NFAmy13B did not show activity loss and retained 96% residual activity after pre-incubation at pH 11 for 21 h and pH 12 for 10 h, respectively. Additionally, 1.25 mM Ca2+ significantly improved its thermostability. NFAmy13B showed a synergistic effect on degrading wheat starch with NFAmy13A (GH13_1), another α-amylase from Daqu. Both enzymes could cleave maltotetraose and maltopentaose in same degradation pattern, and only NFAmy13A could efficiently degrade maltotriose. Moreover, NFAmy13B showed higher catalytic efficiency on long-chain starch, while NFAmy13A had higher catalytic efficiency on short-chain maltooligosaccharides. Their different catalytic efficiencies on starch and maltooligosaccharides may be caused by their discrepant substrate-binding region. Conclusions: This study mined a novel GH13_5 fungal α-amylase (NFAmy13B) with outstanding alkali resistance from Nong-flavor (NF) Daqu. Furthermore, its synergistic effect with NFAmy13A (GH13_1) on hydrolyzing wheat starch was confirmed, and their possible contribution in NF Daqu was also speculated. Thus, we not only provide a candidate α-amylase for industry, but also a useful strategy for further studying the interactions in the complex enzyme system of Daqu.

Hide Abstract
Publication
Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils.

Pitt, J. I., Lange, L., Lacey, A. E., Vuong, D., Midgley, D. J., Greenfield, P., Bradbury, M. I., Lacey, E., Busk, P. K., Pilgaard, B., Chooi, Y. H. & Piggott, A. M. (2017). PloS One, 12(4), e0170254.

Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia. It is phylogenetically and phenotypically related most closely to A. leporis States and M. Chr., but differs in conidial colour, other minor features and particularly in metabolite profile. When cultivated on rice as an optimal substrate, A. hancockii produced an extensive array of 69 secondary metabolites. Eleven of the 15 most abundant secondary metabolites, constituting 90% of the total area under the curve of the HPLC trace of the crude extract, were novel. The genome of A. hancockii, approximately 40 Mbp, was sequenced and mined for genes encoding carbohydrate degrading enzymes identified the presence of more than 370 genes in 114 gene clusters, demonstrating that A. hancockii has the capacity to degrade cellulose, hemicellulose, lignin, pectin, starch, chitin, cutin and fructan as nutrient sources. Like most Aspergillus species, A. hancockii exhibited a diverse secondary metabolite gene profile, encoding 26 polyketide synthase, 16 nonribosomal peptide synthase and 15 nonribosomal peptide synthase-like enzymes.

Hide Abstract
Publication
Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter.

Huang, Y., Yi, Z., Jin, Y., Huang, M., He, K., Liu, D., Luo, H., Zhao, D., He, H., Fang, Y. & Zhao, H. (2017). Frontiers in Microbiology, 8, 1747.

Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

Hide Abstract
Publication
Multiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes fed on artificial diets.

Tarayre, C., Bauwens, J., Mattéotti, C., Brasseur, C., Millet, C., Massart, S., Destain, J., Vandenbol, M., De Pauw, E., Haubruge, E., Francis, F., Thonart, P., Portetelle, D. & Francis, F. (2015). Symbiosis, 65(3), 143-155.

The purpose of this work was the observation of the differences between the microbial communities living in the gut of the termite Reticulitermes flavipes fed on different diets. The termites were fed on poplar wood (original diet) and artificial diets consisting of crystalline cellulose (with and without lignin), α-cellulose (with and without lignin) and xylan. The termites were then dissected and the protist communities were analyzed through microscopy, leading to the conclusion that protist species are strongly influenced by diets. BIOLOG ECO Microplates® were used to assess the metabolic properties of the different types of consortia, highlighting strong differences on the basis of principal component analysis and calculation of similarity rates. The microorganisms were cultivated in liquid media corresponding to the artificial diets before being characterized through a metagenetic analysis of gut microbiota (16S ribosomal DNA). This analysis identified several phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Nitrospirae, OP9, Planctomycetes, Proteobacteria, Spirochaetes, TM6, Tenericutes, Verrucomicrobia and WS3. The OTUs were also determined and confirmed the abundance of Proteobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia. It was possible to isolate several strains from the liquid media, and one bacterium and several fungi were found to produce interesting enzymatic activities. The bacterium Chryseobacterium sp. XAvLW produced α-amylase, β-glucosidase, endo-1,4-β-D-glucanase, endo-1,4-β-D-xylanase and filter paper-cellulase, while the fungi Sarocladium kiliense CTGxxyl and Trichoderma virens CTGxAviL generated the same activities added with endo-1,3-β-D-glucanase.

Hide Abstract
Publication
An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment.

Vester, J. K., Glaring, M. A. & Stougaard, P. (2015). Applied Microbiology and Biotechnology, 99(2), 717-727.

A cold-active α-amylase, Amy13C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the Amy13C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and K cat to a mesophilic α-amylase. Amy13C6 was shown to be heat-labile. Temperature optimum was at 10–15°C, and more than 70 % of the relative activity was retained at 1°C. The pH optimum of Amy13C6 was at pH 8–9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the Amy13C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.

Hide Abstract
Publication
Postharvest needle abscission resistance of balsam fir (Abies balsamea) is modified by harvest date.

MacDonald, M. T., Lada, R. R., Veitch, R. S., Thiagarajan, A. & Adams, A. D. (2014). Canadian Journal of Forest Research, 44(11), 1394-1401.

Earlier harvest dates have become necessary for Canadian Christmas tree producers to meet international demand, though by harvesting these trees early they may experience poor needle retention. The objective of this study is to understand the effect of harvest date on needle retention and link those changes to cold acclimation. In one experiment, balsam fir trees with varied needle abscission resistance (NAR) were collected in October and in January and monitored for needle retention. This was repeated for 3 years. In a second experiment, 45 branches were collected each month from September to January and monitored for needle retention, xylem pressure, membrane injury, capacitance, and accumulation of galactose, raffinose, and abscisic acid. High-NAR trees had little improvement in needle retention from October to January, whereas low-NAR trees had significantly improved needle retention from October to January. Between September and January, there was an 85% increase in raffinose, 147% increase in galactose, 80% increase in abscisic acid, and 62% decrease in stem capacitance. Early harvest was not detrimental for all trees, and it appears that cold acclimation is linked to postharvest needle abscission, though cold acclimation does not adequately explain differences between NAR classes.

Hide Abstract
Publication
Hydrolysis of starches and flours by sorghum malt amylases for dextrins production.

Ba, K., Aguedo, M., Tine, E., Paquot, M., Destain, J. & Thonart, P. (2013). European Food Research and Technology, 236(5), 905-918.

Corn and wheat starches as well as wheat and cassava flours were hydrolyzed using sorghum malt at 65°C for 6 h. During these reactions, dextrose equivalent (DE) values were followed under three concentrations of sorghum malt and calcium chloride. Wheat flour presented the highest DE values and cassava flour had the highest hydrolysis yield. Thus, different dextrins were produced in a pilot plant and were analyzed by HPSEC and HPAEC-PAD for their molecular weight distribution and oligosaccharides composition, respectively. The results indicated that oligosaccharides with broad molecular weight distributions were present in the dextrins produced and that the proportion of maltose was very high.

Hide Abstract
Publication
Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.

Derde, L. J., Gomand, S. V., Courtin, C. M. & Delcour, J. A. (2012). Food Chemistry, 135(2), 713-721.

Maltogenic α-amylase from Bacillus stearothermophilus (BStA) is widely used as bread crumb anti-firming enzyme. A maltotetraose-forming α-amylase from Pseudomonas saccharophila (PSA) was recently proposed as alternative, hence the need to compare both exo-acting enzymes with some endo-action component. A purely exo-acting thermostable β-amylase from Clostridium thermosulfurogenes (CTB) was included for reference purposes. Under the experimental conditions used, temperature optima of the enzymes are rather similar (60–65°C), but temperature stability decreased in the order BStA, PSA and CTB. The action of the enzymes on different substrates and their impact on the rheological behaviour of maize starch suspensions demonstrated that, while CTB acts exclusively through an exo-action mechanism, BStA displayed limited endo-action which became more pronounced at higher temperatures. PSA has more substantial endo-action than BStA, which is rather temperature independent. This is important for their impact in processes such as breadmaking, where temperature is gradually increased.

Hide Abstract
Publication

Cold-adaptation and alkaline hydrolytic proprieties of the polar streptomycetes prediction on plate assay, based on insoluble chromogenic substrates with azurine cross-linked.

Cotarlet, M., Negoită, T., Bahrim, G. & Stougaard, P. (2008). Annals of the University Dunarea de Jos of Galati. Fascicle VI--Food Technology, 1(31).

A semi-qualitative screening based on protease and amylase activity evaluation in a basal agar medium supplemented with insoluble chromogenic substrates based on AZCL (Azurine-Crosslinked with amylose or casein) using a plate assay was used for selecting the polar streptomycetes able to produce cold actives and alkaline amylases and proteases. This technique provides a specific and rapid simultaneous detection of high active hydrolase producing strains based on the visible solubilization of small particles of AZCL and the formation of haloes on plates. It has a great potential in increasing the efficacy of screening streptomycetes able to produce hydrolytic enzymes. This study revealed the potential of the selected streptomycetes isolated from polar soils to biosynthesize amylases and proteases cold-adapted at low temperatures (from 5 to 20°C) and alkaline pH values (8 to 9).

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Carrez Clarification Kit K-CARREZ CARREZ
Carrez Clarification Kit
€86.00
Hydrogen Peroxide Assay Kit Megaplex Red K-MRH2O2 MRH2O2
Hydrogen Peroxide Assay Kit (Megaplex Red)
€328.00
Phytase Assay Kit K-PHYTASE PHYTASE
Phytase Assay Kit
€375.00
D-Glucose Assay Kit Megaplex Red K-MRGLUC MRGLUC
D-Glucose Assay Kit (Megaplex Red)
€0.01
Glycogen Algae P-GLYAL
Glycogen (Algae)
€197.00
6-Galactosyllactose O-GLAC6
6’-Galactosyllactose
€0.00
Polygalacturonic Acid Citrus Pectin P-PGACIT
Polygalacturonic Acid (from Citrus Pectin)
€131.00
Isoamylase Flavobacterium odoratum E-ISAMYFO
Isoamylase (Glycogen 6-glucanohydrolase) (Flavobacterium odoratum)
€298.00