The product has been successfully added to your shopping list.


Laminarihexaose O-LAM6
Product code: O-LAM6

20 mg

Prices exclude VAT

Available for shipping

Content: 20 mg
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 10 years under recommended storage conditions
CAS Number: 29842-30-6
Molecular Formula: C36H62O31
Molecular Weight: 990.9
Purity: > 95%
Substrate For (Enzyme): endo-1,3-β-Glucanase

High purity Laminarihexaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Certificate of Analysis
Safety Data Sheet
Megazyme publication

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.

Hide Abstract

Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions.

Deng, Y., Xie, J., Luo, Z., Li, S. P. & Zhao, J. (2020). International Journal of Biological Macromolecules, 165, 530-541.

In this report, we present the strategy for the revelation of synergistic effect and elucidation of active fractions from an immunomodulatory complex polysaccharide derived from seven herbs (Lentinula edodes, Ganodorma lucidum, Tremella fuciformis, Chrysanthemum, Lycium barbarum, Codonopsis pilosula and Poria cocos), a formula used as health product in China market, using the combination of HPSEC-MALLS, immunological bioassay and saccharide mapping analysis. The effects of complex polysaccharide and their fractions on RAW 246.7 macrophages demonstrated that the fractions (CD1, CD2, CD3) with molecular weight above 10 kDa exhibited immune activity by directly stimulated NO release and phagocytosis, and induced macrophages to secrete cytokines. Especially, fraction CD2 with molecular weight of 100-1000 kDa showed the strongest bioactivity (EC50 = 0.19 μg/mL) compared with their individual corresponding herbal polysaccharides fractions due to synergistic effect, which supported the scientific use of Chinese herbal mixture. Moreover, their chemical characters were analyzed by HPSEC-MALLS and saccharide mapping, and the original herbs, including L. edodes, G. lucidum, T. fuciformis and Chrysanthemum, responsible for the immunomodulatory activity were tentatively revealed. Results are beneficial for the quality analysis and formula optimization of complex polysaccharides in both biomedical and functional food field.

Hide Abstract

Degradative GH5 β-1, 3-1, 4-glucanase PpBglu5A for glucan in Paenibacillus polymyxa KF-1.

Yuan, Y., Zhang, X., Zhang, H., Wang, W., Zhao, X., Gao, J. & Zhou, Y. (2020). Process Biochemistry, 98, 183-192.

A novel β-1,3-1,4-glucanase in the glycoside hydrolase family 5 (GH5) has been identified in the secretome of Paenibacillus polymyxa KF-1. The recombinant GH5 enzyme PpBglu5A shows broad substrate specificity, with strong lichenase activity, medium β-1,3-glucanase activity, and minimal cellulase activity. Barley β-glucan, lichenan, curdlan, and carboxymethyl cellulose are hydrolyzed to varying degrees by PpBglu5A, with the highest catalytic activity being observed with barley β-glucan. Hydrolysates from barley β-glucan or lichenan are primarily glucan oligosaccharides with degrees of polymerization from 2 to 4. PpBglu5A also hydrolyzes oat bran into oligosaccharides mainly consisted of di-, tri-, and tetra- oligosaccharides that are useful in the preparation of gluco-oligosaccharides. In addition to hydrolytic activity, transglycosylation was also observed with PpBglu5A and cellotriose as substrate. An in vitro assay indicated that the recombinant PpBglu5A has antifungal activity and can inhibit the growth of Canidia albicans. These results suggest that PpBglu5A exhibits unique properties and may be useful as an antifungal agent.

Hide Abstract

β-Glucosidase BGL1 from Coprinopsis cinerea Exhibits a Distinctive Hydrolysis and Transglycosylation Activity for Application in the Production of 3-O-β-D-Gentiobiosyl-D-laminarioligosaccharides.

Kang, L., Zhang, X., Wang, R., Liu, C., Yi, L., Liu, Z., Zhang, Z. & Yuan, S. (2019). Journal of Agricultural and Food Chemistry, 67(38), 10744-10755.

We previously reported that β-glucosidase BGL1 at low concentration (15 µg mL-1) from Coprinopsis cinereal exhibited hydrolytic activity only toward laminarioligosaccharides but not toward cellooligosaccharides and gentiobiose. This study shows that BGL1 at high concentration (200 µg mL-1) also hydrolyzed cellobiose and gentiobiose, which accounted for only 0.83 and 2.05% of its activity toward laminaribiose, respectively. Interestingly, BGL1 at low concentration (1.5 µg mL-1) showed transglycosylation but BGL1 at high concentration (200 µg mL-1) did not. BGL1 utilizes only laminarioligosaccharides but not glucose, gentiobiose, and cellobiose to synthesize the higher oligosaccharides. BGL1 transferred one glucosyl residue from substrate laminarioligosaccharide to another laminarioligosaccharide as an acceptor in a β(1 → 3) or β(1 → 6) fashion to produce higher laminarioligosaccharides or 3-O-β-D-gentiobiosyl-D-laminarioligosaccharides. The BGL1-digested laminaritriose exhibited approximately 90% enhancement in the anti-oxidant activity compared to that of untreated laminaritriose, implying a potential application of BGL1-based transglycosylation for the production of high value-added rare oligosaccharides.

Hide Abstract

Design of Polysaccharide-b-Elastin-Like Polypeptide Bioconjugates and Their Thermoresponsive Self-Assembly.

Xiao, Y., Chinoy, Z. S., Pecastaings, G., Bathany, K., Garanger, E. & Lecommandoux, S. (2019). Biomacromolecules, 21(1), 114-125.

The advantageous biological properties of polysaccharides and precise stimuli-responsiveness of elastin-like polypeptides (ELPs) are of great interest for the design of polysaccharide- and polypeptide-based amphiphilic block copolymers for biomedical applications. Herein, we report the synthesis and characterization of a series of polysaccharide-block-ELP copolymers, containing two biocompatible and biodegradable blocks coupled via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting bioconjugates are capable of self-assembling into well-defined nanoparticles in aqueous solution upon raising the solution temperature above a specific transition temperature (Tt)-a characteristic of the ELP moiety. To the best of our knowledge, this is the first study where polysaccharides were combined with a stimuli-responsive ELP for the preparation of thermosensitive self-assemblies, providing insight into novel pathways for designing bioinspired stimuli-responsive self-assemblies for biomedical applications.

Hide Abstract

HPAEC-PAD and Q-TOF-MS/MS analysis reveal a novel mode of action of endo-β-1,3(4)-D-glucanase Eng16A from coprinopsis cinerea on barley β-glucan.

Xiong, Y., Wang, Y., Li, M., Kang, L., Zhou, J., Liu, C., Liu, Z., Zhang, Z. & Yuan, S. (2019). Food Chemistry, 287, 160-166.

We previously reported that an endo-β-1,3(4)-d-glucanase, Eng16A, from C. cinerea shows a higher degradation activity toward barley β-glucan than laminarin. HPAEC-PAD and Q-TOF-MS/MS analyses show that Eng16A-digestion products of barley β-glucan not only contain some oligosaccharides with (1 → 3)-β-linkage adjacent to the reducing end, which is consistent with β-1,3(4)-glucanase-digestion products, but also include some oligosaccharides containing (1 → 4)-β-linkage adjacent to the reducing end which is consistent with cellulase-digestion products. Thus, Eng16A possesses both cellulase and β-1,3(4)-glucanase activities. Because Eng16A does not degrade cellulose, we propose that the insertion of a (1 → 3)-β-linkage among the groups of (1 → 4)-β-linkages may make these (1 → 4)-β-linkages prone to cleavage by Eng16A. Furthermore, Eng16A also possesses transglycosylation activity which leads to some products containing one or a few consecutive (1 → 3)-β-linkages adjacent to the non-reducing end. Therefore, HPAEC-PAD and Q-TOF-MS/MS analyses provide an efficient approach to reveal complicated modes of action of some endo-β-1,3(4)-d-glucanases on barley β-glucan.

Hide Abstract

Molecular recognition of the beta‐glucans laminarin and pustulan by a SusD‐like glycan‐binding protein of a marine Bacteroidetes.

Mystkowska, A. A., Robb, C., VidalMelgosa, S., Vanni, C., FernandezGuerra, A., Höhne, M. & Hehemann, J. H. (2018). The FEBS journal, 285(23), 4465-4481.

Marine bacteria catabolize carbohydrate polymers of algae, which synthesize these structurally diverse molecules in ocean surface waters. Although algal glycans are an abundant carbon and energy source in the ocean, the molecular details that enable specific recognition between algal glycans and bacterial degraders remain largely unknown. Here we characterized a surface protein, GMSusD from the planktonic Bacteroidetes‐Gramella sp. MAR_2010_102 that thrives during algal blooms. Our biochemical and structural analyses show that GMSusD binds glucose polysaccharides such as branched laminarin and linear pustulan. The 1.8 Å crystal structure of GMSusD indicates that three tryptophan residues form the putative glycan‐binding site. Mutagenesis studies confirmed that these residues are crucial for laminarin recognition. We queried metagenomes of global surface water datasets for the occurrence of SusD‐like proteins and found sequences with the three structurally conserved residues in different locations in the ocean. The molecular selectivity of GMSusD underscores that specific interactions are required for laminarin recognition. In conclusion, our findings provide insight into the molecular details of β‐glucan binding by GMSusD and our bioinformatic analysis reveals that this molecular interaction may contribute to glucan cycling in the surface ocean.

Hide Abstract

Synthesis and self-assembly of Xylan-based amphiphiles: from bio-based vesicles to antifungal properties.

Rosselgong, J., Chemin, M., Almada, C. C., Hemery, G., Guigner, J. M., Chollet, G., Labat, G., Da Silva Perez, D., Ham-Pichavant, F., Grau, E., Grelier, S., LecommandouX, S. & Grelier, S. (2018). Biomacromolecules, 20(1), 118-129.

This work aims at designing functional biomaterials through selective chemical modification of xylan from beechwood. Acidic hydrolysis of xylan led to well-defined oligomers with an average of six xylose units per chain and with an aldehyde group at the reductive end. Reductive amination was performed on this aldehyde end group to introduce an azide reactive group. “Click chemistry” was then applied to couple these hydrophilic xylans moieties with different hydrophobic fatty acid methyl esters that were previously functionalized with complementary alkyne functions. The resulting amphiphilic bio-based conjugates were then self-assembled using three different methods, namely, direct solubilization, thin-film rehydration/extrusion, and microfluidics. Well-defined micelles and vesicles were obtained, and their high loading capacity with propiconazole as an antifungal active molecule was shown. The resulting vesicles loaded with propiconazole in a microfluidic process proved to significantly improve the antifungal activity of propiconazole, demonstrating the high potential of such xylan-based amphiphiles.

Hide Abstract
Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida.

Li, S. S., Ogbomo, H., Mansour, M. K., Xiang, R. F., Szabo, L., Munro, F. Mukherjee, P., Mariuzza, R. A., Amrein, M., Vyas, J. M., Robbins, S. M. & Mody, C. H. (2018). Nature Communications, 9(1), 751.

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that β-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, β-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble β-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating β-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity.

Hide Abstract
Production of high-value β-1, 3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan.

Wang, D., Kim, D. H., Yoon, J. J. & Kim, K. H. (2017). Process Biochemistry, 52, 233-237.

We report the first hydrothermal hydrolysis of curdlan, a water insoluble β-1,3-glucan, to produce β-1,3-glucooligosaccharides, which are high-value materials with health-benefiting activities. In this study, hydrothermal hydrolysis was tested for the liquefaction and saccharification of curdlan. The optimal hydrothermal hydrolysis conditions were 180°C and 60 min, respectively, resulting in a high degree of liquefaction (98.4%) and low byproduct formation. Under the optimal conditions, 17.47 g/L of β-1,3-glucooligosaccharides was produced from 20 g/L of curdlan, representing a conversion yield of 87.4% (w/w). Using this process, β-1,3-glucooligosaccharides were conveniently produced in a one-step reaction without any chemicals or enzymes. This hydrothermal hydrolysis for curdlan exhibited the best performance among various hydrolysis processes reported to date. This method can be applied to large-scale production of β-1,3-glucooligosaccharides for the functional food and biopharmaceutical industries.

Hide Abstract
Chemical characterization and immunomodulatory activity of acetylated polysaccharides from Dendrobium devonianum.

Deng, Y., Li, M., Chen, L. X., Chen, X. Q., Lu, J. H., Zhao, J. & Li, S. P. (2017). Carbohydrate Polymers, In Press.

The chain conformation, chemical characters and immunomodulatory activity of polysaccharide from Dendrobium devonianum (DDP) were investigated.Results showed that molecular weights, polydispersity index, radius of gyrations of DDP were 3.99 × 105 Da, 1.27, 74.1 nm, respectively. By applying the polymer solution theory, the exponent (v) values of <S2>z 1/2 = kMwv was calculated as 0.38, which revealed that DDP existed as a globular shape in aqueous solution, and further confirmed by AFM analysis. Furthermore, the main monosaccharide compositions were Man and Glc with the ratio of 29.61:1.00. Indeed, the main glycosidic linkages were β-1,4-Manp, and substituted with acetyl groups at O-2 and O-3 position. Notably, DDP could promote the immune functions of macrophages including NO release and phagocytosis. Thus, DDP could be explored as a natural immune-stimulating agent in the health and functional food area as well as pharmaceutical industries.

Hide Abstract
Purification and Characterization of a Thermostable Laminarinase from Penicillium rolfsii c3-2 (1) IBRL.

Lee, K. C., Arai, T., Ibrahim, D., Kosugi, A., Prawitwong, P., Lan, D., Murata, Y. & Mori, Y. (2014). BioResources, 9(1), 1072-1084.

A laminarinase (endo-β-1,3-glucanase) was purified to homogeneity from Penicillium rolfsii c3-2(1) IBRL, which was originally produced in liquid culture containing 1% xylan from birchwood, via anion-exchange chromatography, gel filtration on Sephacryl S-100, and hydrophobic interaction chromatography. A single protein band with a molecular weight of 75 kDa was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which had an optimum catalytic activity at pH 4.0 to 5.0 and 70°C. This purified enzyme was most stable in the pH range 4 to 7, while it was thermostable up to 55°C and retained up to 90% of its activity after 4 h pre-incubation. A substrate laminarin kinetic study yielded estimated Km and Vmax values of 0.0817 mg/mL and 372.2 µmol/min/mg, respectively. Laminari-oligosaccharide degradation, which was analyzed by thin layer chromatography, yielded the major hydrolysis products laminaribiose and glucose.

Hide Abstract
Gas-phase fragmentation of oligosaccharides in MALDI laser-enhanced in-source decay induced by thermal hydrogen radicals.

Yang, H., Li, M., Li, Z. & Liu, S. (2012). Analyst, 137(16), 3624-3626.

Laser-enhanced in-source decay (LEISD) MALDI MS recently proposed for structural analysis of oligosaccharides was used to systematically investigate ISD fragmentation of oligosaccharides, which was found to be mediated by thermal hydrogen radicals from a matrix and underwent a charge-induced process, depending on the nature of the matrix and the structure of an oligosaccharide.

Hide Abstract
Structural characterization of neutral oligosaccharides by laser-enhanced in-source decay of MALDI-FTICR MS.

Yang, H., Yu, Y., Song, F. & Liu, S. (2011). Journal of The American Society for Mass Spectrometry, 22(5), 845-855.

MALDI in-source decay (ISD) technique described to date has proven to be a convenient and rapid method for sequencing purified peptides and proteins. However, the general ISD still can not produce adequate fragments for the detailed structural elucidation of oligosaccharides. In this study, an efficient and practical method termed the laser-enhanced ISD (LEISD) technique of MALDI-FTICR MS allows highly reliable and abundant fragmentation of the neutral oligosaccharides, which was attributed to the ultrahigh irradiation laser of mJ level. The yield of ISD fragmentation was evaluated under different laser powers for 7 neutral oligosaccharides using DHB as matrix. Better quality ISD spectra including fragment ions in low-mass region were obtained at higher laser power. Results from the LEISD of oligosaccharides demonstrated that a significantly better signal-to-noise ratio (S/N) and more structural information could be obtained in comparison to the conventional CID. It was also suggested that the valuable A ions derived from cross-ring cleavage of the linear oligosaccharides allowed the distinction among α(1 → 4)-, α(1 → 6)-, β(1 → 4)-, and β(1 → 3)-linked isobaric structures according to fragment types and intensities. In addition, ideal fragmentation ions observed by LEISD method facilitated the determination of the sequences and branched points of complex oligosaccharides from human milk.

Hide Abstract
Isoliquiritigenin (4,2′,4′-trihydroxychalcone): A new matrix-assisted laser desorption/ionization matrix with outstanding properties for the analysis of neutral oligosaccharides.

Yang, H., Wang, J., Song, F., Zhou, Y. & Liu, S. (2011). Analytica Chimica Acta, 701(1), 45-51.

A novel matrix of isoliquiritigenin (ISL), a flavonoid with a chalcone structure (4,2′,4′-trihydroxychalcone), was demonstrated to be advantageous in the analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). With ISL as a matrix, adequate signal for an analyte can be obtained in much lower matrix concentrations and laser intensity compared to commonly used MALDI matrices. Four different sample preparation methods were tested, and the dried droplet method exhibited the best performance on MALDI-TOF-MS analysis of oligosaccharides with ISL as a matrix. For the analysis of carbohydrates, compared with popular matrices such as 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP), ISL exhibited outstanding matrix properties as follows: (1) higher homogeneity of crystallization thus allowing automatic data acquisition, (2) better spectral quality in terms of resolution and signal to noise ratio (S N-1), (3) better salt tolerance, (4) higher sensitivity, and (5) enough fragmentation yield to use LIFT-TOF/TOF MS to get richer structural information. In addition, reliable quantitative analysis of oligosaccharides with a good linearity over two concentration orders (1–100 pmol µL-1) and good reproducibility of the signal intensity (RSD less than 15%) were achieved using this matrix. These results give a new outlook on high-speed analysis of neutral carbohydrates by MALDI-TOF MS.

Hide Abstract
Family 6 carbohydrate binding modules recognize the non-reducing end of β-1,3-linked glucans by presenting a unique ligand binding surface.

van Bueren, A. L., Morland, C., Gilbert, H. J. & Boraston, A. B. (2005). Journal of Biological Chemistry, 280(1), 530-537.

Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the β-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display β-1,3-glucanase activity. BhCBM6 binds β-1,3-glucooligosaccharides with affinities of ~1 × 105 M-1. The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended β-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.

Hide Abstract

An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination.

Barral, P., Suarez, C., Batanero, E., Alfonso, C., de Dios Alche, J., Rodriguez-Garcia, M. I., Villalba, M., Rivas, G. & Rodriguez, R. (2005). Biochem. J, 390, 77-84.

CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-β-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6°C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-β-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Laminaribiose O-LAM2
Hexaacetyl-chitohexaose O-CHI6