The product has been successfully added to your shopping list.

endo-1,3-β-D-Glucanase (barley)

endo-1-3-beta-D-Glucanase barley Recombinant E-LAMHV
Product code: E-LAMHV
€152.00

5,000 Units

Prices exclude VAT

Available for shipping

Content: 5,000 Units
Shipping Temperature: Ambient
Storage Temperature: Below -10oC
Formulation: In 50% (v/v) glycerol
Physical Form: Solution
Stability: Minimum 1 year at < -10oC. Check vial for details.
Enzyme Activity: endo-1,3-β-Glucanase
EC Number: 3.2.1.39
CAZy Family: GH17
CAS Number: 9025-37-0
Synonyms: glucan endo-1,3-beta-D-glucosidase; 3-beta-D-glucan glucanohydrolase
Source: Hordeum vulgare
Molecular Weight: 34,100
Concentration: Supplied at ~ 2,500 U/mL
Expression: Recombinant from Hordeum vulgare
Specificity: endo-hydrolysis of (1,3)-β-D-glucosidic linkages in (1,3)-β-D-glucans.
Specific Activity: ~ 100 U/mg (40oC, pH 5.0 on laminarin)
Unit Definition: One Unit of endo-1,3-β-D-Glucanase activity is defined as the amount of enzyme required to release one µmole of glucose-reducing-sugar equivalents per minute in the presence of laminarin (10 mg/mL) in sodium acetate buffer (100mM), pH 5.0 at 40oC.
Temperature Optima: 50oC
pH Optima: 5
Application examples: Applications in carbohydrate and biofuels research and in the food and feeds industries.

High purity recombinant endo-1,3-β-Glucanase (barley) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Publication
Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC.

Wu, D. T., Cheong, K. L., Deng, Y., Lin, P. C., Wei, F., Lv, X. J., Long, Z. R., Zhoa, J., Ma, S. C. & Li, S. P. (2015). Carbohydrate polymers, 134, 12-19.

Water-soluble polysaccharides from 51 batches of fruits of L. barbarum (wolfberry) in China were investigated and compared using saccharide mapping, partial acid hydrolysis, single and composite enzymatic digestion, followed by polysaccharide analysis by using carbohydrate gel electrophoresis (PACE) analysis and high performance thin layer chromatography (HPTLC) analysis, respectively. Results showed that multiple PACE and HPTLC fingerprints of partial acid and enzymatic hydrolysates of polysaccharides from L. barbarum in China were similar, respectively. In addition, results indicated that β-1,3-glucosidic, α-1,4-galactosiduronic and α-1,5-arabinosidic linkages existed in polysaccharides from L. barbarum collected in China, and the similarity of polysaccharides in L. barbarum collected from different regions of China was pretty high, which are helpful for the improvement of the performance of polysaccharides from L. barbarum in functional/health foods area. Furthermore, polysaccharides from Panax notoginseng, Angelica sinensis, and Astragalus membranaceus var. mongholicus were successfully distinguished from those of L. barbarum based on their PACE fingerprints. These results were beneficial to improve the quality control of polysaccharides from L. barabrum and their products, which suggested that saccharide mapping based on PACE and HPTLC analysis could be a routine approach for quality control of polysaccharides.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Cellulase endo-1-4-beta-D-glucanase Thermobifida halotolerans E-CELTH
Cellulase (endo-1,4-β-D-glucanase) (Thermobifida halotolerans)
€152.00