The product has been successfully added to your shopping list.

endo-1,4 β-Mannanase (Aspergillus niger)

Product code: E-BMANN
€142.00

600 Units

Prices exclude VAT

Available for shipping

Content: 600 Units
Shipping Temperature: Ambient
Storage Temperature: 2-8oC
Formulation: In 3.2 M ammonium sulphate
Physical Form: Suspension
Stability: > 4 years at 4oC
Enzyme Activity: endo-1,4-β-Mannanase
EC Number: 3.2.1.78
CAZy Family: GH26
CAS Number: 37288-54-3
Synonyms: mannan endo-1,4-beta-mannosidase; 4-beta-D-mannan mannanohydrolase
Source: Aspergillus niger
Molecular Weight: 48,000
Concentration: Supplied at ~ 600 U/mL
Expression: Purified from Aspergillus niger
Specificity: Random hydrolysis of (1,4)-β-D-mannosidic linkages in mannans, galactomannans and glucomannans.
Specific Activity: ~ 50 U/mg (40oC, pH 4.0 on carob galactomannan)
Unit Definition: One Unit of mannanase activity is defined as the amount of enzyme required to release one µmole of mannose reducing-sugar equivalents per minute from carob galactomannan (10 mg/mL) in sodium acetate buffer (100 mM), pH 4.0 at 40oC.
Temperature Optima: 60oC
pH Optima: 3
Application examples: Applications established in diagnostics and research within the food and feed, carbohydrate, biofuels and paper production industries.

High purity endo-1,4 β-Mannanase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

See more related CAZy enzyme products.

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Megazyme publication
Galactomannan changes in developing Gleditsia Triacanthos Seeds.

Mallett, I., McCleary, B. V. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Galactomannan has been extracted from the endosperm of seeds of Gleditsia triacanthos (honey locust) at different stages of development, when the seed was accumulating storage material. Properties of the different samples have been studied. The molecular size distribution became more disperse as galactomannan accumulated and the galactose: mannose ratio decreased slightly. Some possible reasons for these changes are discussed.

Hide Abstract
Megazyme publication
Effect of galactose-substitution-patterns on the interaction properties of galactomannas.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Carbohydrate Research, 147(2), 275-294.

A range of galactomannans varying widely in the contents of D-galactose have been compared for self-association and their interaction properties with agarose and xanthan. Whereas, in general, the most interactive galactomannans are those in which the (1→4)-β-D-mannan chain is least substituted by α-D-galactosyl stubs, evidence is presented which indicates that the distribution of D-galactosyl groups along the backbone (fine structure) can have a significant effect on the interaction properties. For galactomannans containing <30% of D-galactose, those which contain a higher frequency of unsubstituted blocks of intermediate length in the β-D-mannan chain are most interactive. For galactomannans containing >40% of D-galactose, those which contain a higher frequency of exactly alternating regions in the β-D-mannan chain are most interactive. This selectivity, on the basis of galactomannan fine-structure, in mixed polysaccharide interactions in vitro could mimic the selectivity of binding of branched plant-cell-wall polysaccharides in biological systems.

Hide Abstract
Megazyme publication

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

A range of galactomannans varying widely in the content of D-galactose have been compared for self-association, and their interaction properties with agarose and xanthan. The results presented indicate that in general the most interactive galactomannans are those in which the D-mannan main chain bears fewest D-galactose stubs, and confirm that the distribution of D-galactose groups along the main chain can have a significant effect on the interactive properties of the galactomannans. It has been shown that freeze — thaw precipitation of galactomannans requires regions of totally unsubstituted D-mannose residues along the main chain, and that a threshold for significant freeze — thaw precipitation occurs at a weight-average length of totally unsubstituted residues of approximately six. For galactomannans having structures above this threshold their interactive properties with other polysaccharides are controlled by structural features associated with totally unsubstituted regions of the D-mannan backbone. In contrast, for galactomannans below this threshold, their interactive properties are controlled by structural features associated with unsubstituted sides of D-mannan backbone.

Hide Abstract
Megazyme publication
The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

The distribution of D-galactosyl groups along the D-mannan backbone (fine structure) of carob and guar galactomannans has been studied by a computer analysis of the amounts and structures of oligosaccharides released on hydrolysis of the polymers with two highly purified β-D-mannanases isolated from germinated guar seed and from Aspergillus niger cultures. Computer programmes were developed which accounted for the specific subsite-binding requirements of the β-D-mannanases and which simulated the synthesis of galactomannan by processes in which the D-galactosyl groups were transferred to the growing D-mannan chain in either a statistically random manner or as influenced by nearest-neighbour/second-nearest-neighbour substitution. Such a model was chosen as it is consistent with the known pattern of synthesis of similar polysaccharides, for example, xyloglucan; also, addition to a preformed mannan chain would be unlikely, due to the insoluble nature of such polymers. The D-galactose distribution in carob galactomannan and in the hot- and cold-water-soluble fractions of carob galactomannan has been shown to be non-regular, with a high proportion of substituted couplets, lesser amounts of triplets, and an absence of blocks of substitution. The probability of sequences in which alternate D-mannosyl residues are substituted is low. The probability distribution of block sizes for unsubstituted D-mannosyl residues indicates that there is a higher proportion of blocks of intermediate size than would be present in a galactomannan with a statistically random D-galactose distribution. Based on the almost identical patterns of amounts of oligosaccharides produced on hydrolysis with β-D-mannanase, it appears that galactomannans from seed of a wide range of carob varities have the same fine-structure. The D-galactose distribution in guar-seed galactomannan also appears to be non-regular, and galactomannans from different guar-seed varieties appear to have the same fine-structure.

Hide Abstract
Megazyme publication
β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

β-D-Mannosidase (β-D-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-D-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-D-mannosidase, β-D-galactosidase, 2-acet-amido-2-deoxy-D-glucosidase, (1→4)-β-D-mannanase, and (1→4)-β-D-glucanase activities, almost devoid of α-D-galactosidase activity, and contaminated with <0.02% of β-D-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-D-manno-oligosaccharides of d.p. 3-5 (12.5mM). The initial rate of hydrolysis of (1→4)-linked β-D-manno-oligosaccharides of d.p. 2-5 and of reduced β-D-manno-oligosaccharides of d.p. 3-5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-D-mannopyranosides were readily hydrolysed. β-D-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-D-galactosyl-β-D-mannobiose and 63-α-D-galactosyl-β-D-mannotetraose, and at ~90 times the rate for β-D-mannobi-itol.

Hide Abstract
Megazyme publication
Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Hydrolysis of galactomannan in endosperms of germinating guar is due to the combined action of three enzymes, α-galactosidase, β-mannanase and exo-β-mannanase. α-Galactosidase and exo-β-mannanase activities occur both in endosperm and cotyledon tissue but β-mannanase occurs only in endosperms. On seed germination, β-mannanase and endospermic α-galactosidase are synthesized and activity changes parallel galactomannan degradation. Galactomannan degradation and synthesis of these two enzymes are inhibited by cycloheximide. In contrast, endospermic exo-β-mannanase is not synthesized on seed germination, but rather is already present throughout endosperm tissue. It has no action on native galactomannan. α-Galactosidase, β-mannanase and exo-β-mannanase have been purified to homogeneity and their separate and combined action in the hydrolysis of galactomannan and effect on the rate of uptake of carbohydrate by cotyledons, studied. Results obtained indicated that these three activities are sufficient to account for galactomannan degradation in vivo and, further, that all three are required. Cotyledons contain an active exo-β-mannanase and sugar-uptake experiments have shown that cotyledons can absorb mannobiose intact, indicating that this enzyme is involved in the complete degradation of galactomannan on seed germination.

Hide Abstract
Megazyme publication
Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Treatment of hot-water-soluble carob galactomannan with β-D-mannanases from A. niger or lucerne seed affords an array of D-galactose-containing β-D-mannosaccharides as well as β-D-manno-biose, -triose, and -tetraose (lucerne-seed enzyme only). The D-galactose-containing β-D-mannosaccharides of d.p. 3–9 produced by A. niger β-D-mannanase have been characterised, using enzymic, n.m.r., and chemical techniques, as 61-α-D-galactosyl-β-D-mannobiose, 61-α-D-galactosyl-β-D-mannotriose, 63,64-di-α-D-galactosyl-β-D-mannopentaose (the only heptasaccharide), and 63,64-di-α-D-galactosyl-β-D-mannohexaose, 64,65-di-α-D-galactosyl-β-D-mannohexaose, and 61, 63,64-tri-α-D-galactosyl-β-D-mannopentaose (the only octasaccharides). Four nonasaccharides have also been characterised. Penta- and hexa-saccharides were absent. Lucerne-seed β-D-mannanase produced the same branched tri-, tetra- and hepta-saccharides, and also penta- and hexa-saccharides that were characterised as 61-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannotetraose, 61,63-di-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannopentaose, and 64-α-D-galactosyl-β-D-mannopentaose. None of the oligosaccharides contained a D-galactose stub on the terminal D-mannosyl group nor were they substituted on the second D-mannosyl residue from the reducing terminal.

Hide Abstract
Megazyme publication
Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

Purified (1→4)-β-D-mannanase from Aspergillus niger and lucerne seeds has been incubated with mannosaccharides and end-reduced (1→4)-β-D-mannosaccharides and, from the products of hydrolysis, a cyclic reaction-sequence has been proposed. From the heterosaccharides released by hydrolysis of the hot-water-soluble fraction of carob galactomannan by A. niger β-D-mannanase, a pattern of binding between the β-D-mannan chain and the enzyme has been deduced. The products of hydrolysis with the β-D-mannanases from Irpex lacteus, Helix pomatia, Bacillus subtilis, and lucerne and guar seeds have also been determined, and the differences from the action of A. niger β-D-mannanase related to minor differences in substrate binding. The products of hydrolysis of glucomannan are consistent with those expected from the binding pattern proposed from the hydrolysis of galactomannan.

Hide Abstract
Megazyme publication
Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

A β-D-mannoside mannohydrolase enzyme has been purified to homogeneity from germinated guar-seeds. Difficulties associated with the extraction and purification appeared to be due to an interaction of the enzyme with other protein material. The purified enzyme hydrolysed various natural and synthetic substrates, including β-D-manno-oligosaccharides and reduced β-D-manno-oligosaccharides of degree of polymerisation 2 to 6, as well as p-nitrophenyl, naphthyl, and methylumbelliferyl β-D-mannopyranosides. The preferred, natural substrate was β-D-mannopentaose, which was hydrolysed at twice the rate of β-D-mannotetraose and five times the rate of β-D-mannotriose. This result, together with the observation that α-D-mannose is released on hydrolysis, indicates that the enzyme is an exo-β-D-mannanase.

Hide Abstract
Megazyme publication
Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

N.m.r., enzymic, and chemical techniques have been used to characterise the D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob and L. leucocephala D-galacto-D-mannans by Driselase β-D-mannanase. These oligosaccharides were shown to be exclusively 61-α-D-galactosyl-β-D-mannobiose and 61-α-D-galactosyl-β-D-mannotriose. Furthermore, these were the only D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob D-galacto-D-mannan by β-D-mannanases from other sources, including Bacillus subtilis, Aspergillus niger, Helix pomatia gut solution, and germinated legumes. Acid hydrolysis of lucerne galactomannan yielded 61-α-D-galactosyl-β-D-mannobiose and 62-α-D-galactosyl-β-D-mannobiose.

Hide Abstract
Megazyme publication

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

An enzymic technique has been developed for the rapid and accurate quantitation of the galactomannan content of guar seeds and milling fractions. The technique involves the measurement of the galactose component of galactomannans using galactose dehydrogenase. The galactomannans are converted to galactose and manno-oligosaccharides using partially purified enzymes from a commercial preparation and from germinated guar seeds. Simple procedures have been devised for the preparation of these enzymes. Application of the technique to a number of guar varieties gave values for the galactomannan content ranging from 22.7 to 30.8% of seed weight.

Hide Abstract
Megazyme publication
Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

β-Mannanase activities in the commercial enzyme preparations Driselase and Cellulase, in culture solutions of Bacillus subtilis (TX1), in commercial snail gut (Helix pomatia) preparations and in germinated seeds of lucerne, Leucaena leucocephala and honey locust, have been purified by substrate affinity chromatography on glucomannan-AH-Sepharose. On isoelectric focusing, multiple protein bands were found, all of which had β-mannanase activity. Each preparation appeared as a single major band on SDS-polyacrylamide gel electrophoresis. The enzymes varied in their final specific activities, Km values, optimal pH, isoelectric points and pH and temperature stabilities but had similar MWs. The enzymes have different abilities to hydrolyse galactomannans which are highly substituted with galactose. The preparations Driselase and Cellulase contain β-mannanases which can attack highly substituted galactomannans at points of single unsubstituted D-mannosyl residues if the D-galactose residues in the vicinity of the bond to be hydrolysed are all on only one side of the main chain.

Hide Abstract
Megazyme publication
Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

A series of galactomannans with varying degrees of galactose substitution have been extracted from the endosperms of legume seeds with water and alkali and the amount of substitution required for water solubility has been determined. Some were heterogeneous with respect to the degree of galactose substitution. The structural requirements for hydrolysis by plant β-mannanase have been studied using the relative rates and extents of hydrolysis of these galactomannans. A more detailed examination of the products of hydrolysis of carob galactomannan has been made. At least two contiguous anhydromannose units appear to be needed for scission. This is similar to the requirement for hydrolysis by microbial enzymes. Judas tree (Cercis siliquastrum) endosperm contained a polysaccharide with a unique composition for a legume seed reserve. Gel chromatography and electrophoresis on cellulose acetate indicated homogeneity. Hydrolysis with a mixture of β-mannanase and α-galactosidase gave a glucose-mannose disaccharide and acetolysis gave a galactose-mannose. These results, as well as the pattern of hydrolysis by β-mannanase were consistent with a galactoglucomannan structure.

Hide Abstract
Megazyme publication
Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Structural changes in galactomannan on germination of lucerne, carob, honey locust, guar and soybean seeds, as measured by viscosity, elution volumes on gel filtration and ultra-centrifugation were slight consistent with a rapid and complete hydrolysis of a molecule once hydrolysis of the mannan chain starts. β-Mannanase activity increased and then decreased, paralleling galactomannan depletion. Multiple forms of β-mannanase were isolated and these were located in the endosperm. β-Mannanase had limited ability to hydrolyse galactomannans with high galactose contents. Seeds containing these galactomannans had very active α-galactosidases. β-Mannosidases were present in both endosperm and cotyledon-embryo and could be separated chromatographically. The level of activity was just sufficient to account for mannose production from manno-oligosaccharides.

Hide Abstract
Publication

Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass.

Linares, N. C., Dilokpimol, A., Stålbrand, H., Mäkelä, M. R. & de Vries, R. P. (2020). Bioresource Technology, 295, 122258.

α-Galactosidases are important industrial enzymes for hemicellulosic biomass degradation or modification. In this study, six novel extracellular α-galactosidases from Penicillium subrubescens were produced in Pichia pastoris and characterized. All α-galactosidases exhibited high affinity to pNPαGal, and only AglE was not active towards galacto-oligomers. Especially AglB and AglD released high amounts of galactose from guar gum, carob galactomannan and locust bean, but combining α-galactosidases with an endomannanase dramatically improved galactose release. Structural comparisons to other α-galactosidases and homology modelling showed high sequence similarities, albeit significant differences in mechanisms of productive binding, including discrimination between various galactosides. To our knowledge, this is the first study of such an extensive repertoire of extracellular fungal α-galactosidases, to demonstrate their potential for degradation of galactomannan-rich biomass. These findings contribute to understanding the differences within glycoside hydrolase families, to facilitate the development of new strategies to generate tailor-made enzymes for new industrial bioprocesses.

Hide Abstract
Publication

Expression of Enzymes During the Germination of Seeds in Endangered Cerrado Species.

Assis, J. G. R., Marques, E. R., Carvalho, M. L. M., Pires, R. M. O., Lopes, C. A. & Pereira, R. W. (2019). Journal of Agricultural Science, 11(6).

The objective of this study was to evaluate the enzymes expression during the seeds germination process of ever-lasting species Comanthera elegans and Comanthera bisulcata. For the evaluation of the seeds physiological potential, the germination test and index of germination speed were performed. The expression of enzymes esterase (EST), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), superoxide dismutase (SOD), catalase (CAT) and endo-β-mannanase during the germination process were evaluated. The expression of these enzymes was evaluated in dried seeds, in the protrusion, in the emergence of the primal leaf, at the beginning of the formation of normal seedling and dormant seeds at the end of the germination process. To the extent that the germination process occurs in the species C. bisulcata and C. elegans there is greater expression of the enzyme CAT and lower of the enzyme EST. There is variation in the expression of the enzymes SOD, ADH and MDH in seeds of both species during the germination process. The enzyme endo-β-mannanase presents greater activity in seeds with radicle protrusion in the two studied species.

Hide Abstract
Publication

Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites.

Lucenius, J., Valle-Delgado, J. J., Parikka, K. & Österberg, M. (2019). Journal of Colloid and Interface Science, 555, 104-114.

Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces-well described by a polyelectrolyte brush model - and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.

Hide Abstract
Publication

Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide.

Lopes-da-Silva, J. A., & Monteiro, S. R. (2019). Food Chemistry, 294, 216-223.

Soy protein hydrolysates (SPH) with different degrees of hydrolysis (DH 0-16%) were obtained by varying the time of hydrolysis with bromelain. The objective of this study was to evaluate how selected techno-functional properties (gelation, emulsification) of SPH were affected by the presence of a non-gelling polysaccharide. A slight hydrolysis was beneficial to increase gel strength. Also, the emulsifying activity was improved for low DHs, whereas hydrolysis was detrimental for emulsion stability. Under certain conditions the presence of the non-gelling polysaccharide was beneficial to improve SPHs’ functional properties, but the effect was in general complex and strongly dependent on both biopolymers’ concentration and molecular weight. Nevertheless, it was demonstrated that by using SPH and galactomannan mixtures and controlling the biopolymers’ concentration and molecular weight, improved functionalities can be obtained with useful applications in food formulation.

Hide Abstract
Publication

Studies on O-acetyl-glucomannans from Amorphophallus species: Comparison of physicochemical properties and primary structures.

Shi, X. D., Yin, J. Y., Zhang, L. J., Huang, X. J. & Nie, S. P. (2019). Food Hydrocolloids, 89, 503-511.

Plants in Amorphophallus genus are rich in soluble dietary fibres and have long been used as food and traditional medicine in Asian countries. In the present investigation, natural O-acetyl-glucomannans were extracted from tubers of Amorphophallus rivirei (konjac), A. albus and two local types of A. bulbifer (wild type M and wild type B), which were designated as KGM, AGM, MGM, and BGM, successively. Comparative studies were conducted on their physicochemical properties and primary structures. The four AcGMs had about 90% (w/w) neutral sugar, 11% (w/w) moisture, and 1%-2% (w/w) ash. Relatively high contents of acetyl groups (17%-24%, w/w) were detected. Mannose and glucose as the main components existed in molar ratios of 1.41, 1.41, 1.21, and 1.58 for KGM, AGM, MGM, and BGM, respectively. Relative molecular weights of AcGMs increased in the order of: KGM<AGM<MGM<BGM. Apparent viscosities of AcGMs were concentration dependent. MGM and BGM with higher molecular weights and acetyl groups contents had higher viscosities. Further structural analysis showed that the four AcGMs had similar primary structure. The branches probably linked at O-2,6 of mannosyl residues and/or O-3,6 of glucosyl residues. The acetyl groups mainly attached to O-2 and O-3 of mannosyl residues.

Hide Abstract
Safety Information
Symbol : GHS08
Signal Word : Danger
Hazard Statements : H334
Precautionary Statements : P261, P284, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
alpha-Amylase Thermostable Bacillus sp. E-BSTAA
α-Amylase (Thermostable) (Bacillus sp.)
€104.00
Chitinase Clostridium thermocellum E-CHITN
Chitinase (Clostridium thermocellum)
€156.00
Protease (Subtilisin A from Bacillus licheniformis)
Protease (Subtilisin A from Bacillus licheniformis)
€86.00
alpha-Amylase Bacillus licheniformis E-BLAAM
α-Amylase (Bacillus licheniformis)
€53.00
beta-galactosidase Escherichia coli E-ECBGAL
β-Galactosidase (Escherichia coli)
€177.00
beta-D-Xylosidase Selenomonas ruminantium E-BXSR
β-D-Xylosidase (Selenomonas ruminantium)
€98.00
beta-Xylosidase Bacillus pumilus E-BXSEBP
β-Xylosidase (Bacillus pumilus)
€156.00
Protease Subtilisin A from Bacillus licheniformis Powder E-BSPRPD
Protease Subtilisin A (from Bacillus licheniformis) Powder
€173.00