
50 mg
Prices exclude VAT
Available for shipping
Content: | 50 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Ambient |
Physical Form: | Powder |
Stability: | > 2 years under recommended storage conditions |
CAS Number: | 14417-51-7 |
Molecular Formula: | C12H22O11 |
Molecular Weight: | 342.3 |
Purity: | > 95% |
Substrate For (Enzyme): | β-Mannosidase |
High purity Mannobiose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.
Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Hide AbstractCross-Feeding and Enzymatic Catabolism for Mannan-Oligosaccharide Utilization by the Butyrate-Producing Gut Bacterium Roseburia hominis A2-183.
Bhattacharya, A., Majtorp, L., Birgersson, S., Wiemann, M., Sreenivas, K., Verbrugghe, P., Van Aken, O., Van Niel, E. W. J. & Stålbrand, H. (2022). Microorganisms, 10(12), 2496.
β-Mannan is abundant in the human diet and in hemicellulose derived from softwood. Linear or galactose-substituted β-mannan-oligosaccharides (MOS/GMOSs) derived from β-mannan are considered emerging prebiotics that could stimulate health-associated gut microbiota. However, the underlying mechanisms are not yet resolved. Therefore, this study investigated the cross-feeding and metabolic interactions between Bifidobacterium adolescentis ATCC 15703, an acetate producer, and Roseburia hominis A2-183 DSMZ 16839, a butyrate producer, during utilization of MOS/GMOSs. Cocultivation studies suggest that both strains coexist due to differential MOS/GMOS utilization, along with the cross-feeding of acetate from B. adolescentis E194a to R. hominis A2-183. The data suggest that R. hominis A2-183 efficiently utilizes MOS/GMOS in mono- and cocultivation. Notably, we observed the transcriptional upregulation of certain genes within a dedicated MOS/GMOS utilization locus (RhMosUL), and an exo-oligomannosidase (RhMan113A) gene located distally in the R. hominis A2-183 genome. Significantly, biochemical analysis of β-1,4 mannan-oligosaccharide phosphorylase (RhMOP130A), α-galactosidase (RhGal36A), and exo-oligomannosidase (RhMan113A) suggested their potential synergistic role in the initial utilization of MOS/GMOSs. Thus, our results enhance the understanding of MOS/GMOS utilization by potential health-promoting human gut microbiota and highlight the role of cross-feeding and metabolic interactions between two secondary mannan degraders inhabiting the same ecological niche in the gut.
Hide AbstractcAMP signaling factors regulate carbon catabolite repression of hemicellulase genes in Aspergillus nidulans.
Kunitake, E., Uchida, R., Asano, K., Kanamaru, K., Kimura, M., Kimura, T. & Kobayashi, T. (2022). AMB Express, 12(1), 1-10.
Carbon catabolite repression (CCR) enables preferential utilization of easily metabolizable carbon sources, implying the presence of mechanisms to ensure discriminatory gene repression depending on the ambient carbon sources. However, the mechanisms for such hierarchical repression are not precisely understood. In this report, we examined how deletion of pkaA and ganB, which encode cAMP signaling factors, and creA, which encodes a well-characterized repressor of CCR, affects CCR of hemicellulase genes in the filamentous fungus Aspergillus nidulans. β-Xylanase production increased not only in ΔcreA but also in ΔpkaA and ΔganB, with the highest level observed in their double deletants, irrespective of the presence or absence of D-glucose. Expression of the β-xylanase genes in the presence of D-glucose was de-repressed in all the deletion mutants, with significantly higher tolerance against D-glucose repression in ΔpkaA and ΔganB than in ΔcreA. In the presence of galactomannan and D-glucose, partial de-repression of β-mannanase production was detected in ΔcreA, but not in ΔpkaA and ΔganB. The double deletion of creA/pkaA and creA/ganB led to earlier production. Release from D-glucose repression of the β-mannanase genes was partial in the single deletants, while nearly full de-repression was observed in ΔcreAΔpkaA and ΔcreAΔganB. The contribution of PkaA and GanB to CCR by D-xylose of the β-mannanase genes was very minor compared to that of CreA. Consequently, the present study revealed that cAMP signaling plays a major role in CCR of hemicellulase gene expression in a manner that is clearly independent from CreA.
Hide AbstractTechnical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling.
Leivers, S., Lagos, L., Garbers, P., La Rosa, S. L. & Westereng, B. (2022). Communications biology, 5(1), 1-12.
The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities.
Hide AbstractEfficient and green production of manno-oligosaccharides from Gleditsia microphylla galactomannans using CO2 and solid acid in subcritical water.
Xu, W., Han, M., Zhang, W., Tang, M., Zhang, F. & Jiang, J. (2022). LWT, 156, 113019.
This study aimed to produce manno-oligosaccharides (MOS) from Gleditsia microphylla galactomannans (GMG) using CO2 and solid acid (Amberlyst-35) in subcritical water. The optimal condition for MOS preparation was 3 MPa CO2, 0.1 g/g solid acid (relative to GMG) at 150°C for 40 min. The maximum MOS yield with a degree of polymerization from 2 to 4 (M2-M4) was 52.19%, which doubled the yield of MOS compared to either using solely CO2 or solid acid. Solid acid showed excellent performance in producing MOS under subcritical H2O-CO2 condition, due to the enhanced mass transfer efficiency and increased H+ concentration in the reaction system. The solid acid can be easily separated and reused. Comparing with traditional methods used to produce MOS, this approach has many merits such as higher galactomannan hydrolysis efficiency (largely reduced time and higher MOS yield), purer M2-M4 product, lower costs, and more environmental-friendly.
Hide AbstractTransglycosylation by β-mannanase TrMan5A variants and enzyme synergy for synthesis of allyl glycosides from galactomannan.
Butler, S. J., Birgersson, S., Wiemann, M., Arcos-Hernandez, M. & Stålbrand, H. (2021). Process Biochemistry, 112, 154-166.
Retaining β-mannanases are glycoside hydrolases (GHs) that can potentially be applied for synthesis of glycosides by catalysis of transglycosylation reactions. A novel active-site double mutant (R171K/E205D) of the catalytic module (CM) of the family GH5 Trichoderma reesei β-mannanase (TrMan5A) was expressed in Pichia pastoris and purified. TrMan5A, CM and CM-variants R171K and R171K/E205D had pH optima between pH 4.0-5.3 and showed >80% remaining activity after incubation at 40°C for 48 h. The enzymes were screened for transglycosylation capacity toward oligomeric and polymeric donor substrates and alcohol acceptors using mass-spectrometry. Hydrolysis and transglycosylation products were analysed by a novel HPLC procedure using an NH2 column. R171K/E205D was superior in reactions with mannotetraose and the acceptor allyl alcohol, it had twice as high propensity for transglycosylation as wild-type TrMan5A. Wild-type TrMan5A produced the highest amounts of allyl β-mannosides (with 1-3 mannosyls) from locust bean galactomannan. Applying enzyme synergy, adding the GH27 guar α-galactosidase to the reaction (to cleave off galactomannan side-groups), gave a 2.1-fold increase of allyl mannosides and simultaneously a significant production of allyl galactopyranoside, increasing overall yield of allyl glycosides 4.4-fold, from 2.2% to 9.8%. The enzymatic synthesis of reactive allyl glycosides opens up for production of novel biomaterials and glycopolymers.
Hide AbstractProduction and in vitro evaluation of prebiotic manno-oligosaccharides prepared with a recombinant Aspergillus niger endo-mannanase, Man26A.
Magengelele, M., Hlalukana, N., Malgas, S., Rose, S. H., van Zyl, W. H. & Pletschke, B. I. (2021). Enzyme and Microbial Technology, 150, 109893.
In this study, a GH26 endo-mannanase (Man26A) from an Aspergillus niger ATCC 10864 strain, with a molecular mass of 47.8 kDa, was cloned in a yBBH1 vector and expressed in Saccharomyces cerevisiae Y294 strain cells. Upon fractionation by ultra-filtration, the substrate specificity and substrate degradation pattern of the endo-mannanase (Man26A) were investigated using ivory nut linear mannan and two galactomannan substrates with varying amounts of galactosyl substitutions, guar gum and locust bean gum. Man26A exhibited substrate specificity in the order: locust bean gum ≥ ivory nut mannan > guar gum; however, the enzyme generated more manno-oligosaccharides (MOS) from the galactomannans than from linear mannan during extended periods of mannan hydrolysis. MOS with a DP of 2–4 were the major products from mannan substrate hydrolysis, while guar gum also generated higher DP length MOS. All the Man26A generated MOS significantly improved the growth (approximately 3-fold) of the probiotic bacterial strains Streptococcus thermophilus and Bacillus subtilis in M9 minimal medium. Ivory nut mannan and locust bean gum derived MOS did not influence the auto-aggregation ability of the bacteria, while the guar gum derived MOS led to a 50 % reduction in bacterial auto-aggregation. On the other hand, all the MOS significantly improved bacterial biofilm formation (approximately 3-fold). This study suggests that the prebiotic characteristics exhibited by MOS may be dependent on their primary structure, i.e. galactose substitution and DP. Furthermore, the data suggests that the enzyme-generated MOS may be useful as potent additives to dietary foods.
Hide AbstractProduction of mannooligosaccharides producing β-Mannanase by newly isolated Penicillium aculeatum APS1 using oil seed residues under solid state fermentation.
Bangoria, P., Divecha, J. & Shah, A. R. (2021). Biocatalysis and Agricultural Biotechnology, 34, 102023.
The present investigation was focused on the production of extracellular β-mannanase from newly isolated Penicillium aculeatum APS1 using palm kernel cake and soyabean meal which are the residual by-products of oil extraction industry, under solid state fermentation. On supplementing palm kernel cake with 20% soyabean meal, yield of β-mannanase production was reached to 2807 U/g. Response surface methodology was used for statistical optimization of β-mannanase production. Two independent variables, namely moisture level and incubation time, were found to be significantly contributing for the production process. Under optimized condition of moisture level (52.25%) and incubation time (130 h), the yield of β-mannanase was improved by 1.6 fold and maximum activity of β-mannanase was 4696 U/g. The optimum temperature and pH for crude β-mannanase were 65°C and 6.0, respectively. Crude and partially purified β-mannanase was found to be effective in release of mannooligosachharides by hydrolysis of mannan rich substrates viz. locust bean gum, guar gum and konjac glucomannan. Qualitative and quantitative analysis of MOS was carried out by TLC and ion chromatography. β-Mannanase from Penicillium aculeatum APS1 was found to have properties suitable for applications in feed/food industry.
Hide AbstractHigh efficient degradation of glucan/glucomannan to cello-/mannan-oligosaccharide by endoglucanase via tetrasaccharide as intermediate.
Miao, T., Basit, A., Wen, J., Liu, J., Zheng, F., Cao, Y. & Jiang, W. (2021). Food Chemistry, 129175.
Here, we report an efficient endoglucanase from Aureobasidium pullulans (termed ApCel5A) was expressed in Pichia pastoris. ApCel5A shows two different enzyme activities of endoglucanase (1270 U/mg) and mannanase (31.2 U/mg). Through engineering the signal peptide and fed-batch fermentation, the enzyme activity of endoglucanase was improved to 6.63-folds, totally. Its efficient synergism with Celluclast 1.5 L, excellent tolerance to low pH (2.5), cholate and protease suggests potential application in bioresources, food and feed industries. Site-directed mutagenesis experiments present that ApCel5A residues Glu245 and Glu358 are key catalytic sites, while Asp118, Asp122, Asp198 and Asp314 play an auxiliary role. More importantly, ApCel5A display high degradation efficiency of glucan and glucomannan substrates by using tetrasaccharide contained reducing end of glucose residue as an intermediate. This study elucidated the effective methods to improve an endoglucanase expression and detailed catalytic mechanism for degradation of various substrates, which provides a new insight for endoglucanase application.
Hide AbstractProduction of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride.
Xu, W., Han, M., Zhang, W., Zhang, F., Lei, F., Wang, K. & Jiang, J. (2021). Food Chemistry, 346, 128844.
A novel and efficient method for manno-oligosaccharides (MOS) production has been proposed by utilizing Gleditsia microphylla galactomannan as the starting material. This co-operative hydrolysis using ferrous chloride (Fe2+) and acetic acid (HAc) effectively improved the MOS yield and meanwhile decreased the amount of monosaccharide and the 5-hydroxymethyl-furfural (HMF). The highest yields under the optimum conditions were 46.7% by HAc hydrolysis (5 M HAc at 130°C for 120 min); 37.3% by Fe2+ hydrolysis (0.1 M Fe2+ at 150°C for 120 min); and 51.4% by co-operative hydrolysis (2 M HAc, 0.05 M Fe2+ at 160°C for 10 min). From the changes in the value of M/G (mannose/galactose) ratios, it was deduced that Fe2+ predominantly cleaves the main chain, and HAc assists in the breakage of the side chain, thus resulting in the high-efficient co-operative hydrolysis for the production of MOS.
Hide AbstractProduction of mannooligosaccharides from various mannans and evaluation of their prebiotic potential.
Suryawanshi, R. K. & Kango, N. (2021). Food Chemistry, 334, 127428.
Aspergillus quadrilineatus endo-β-mannanase effectively degraded konjac glucomannan (66.09% w/v), copra meal (38.99% w/v) and locust bean galactomannan (20.94% w/v). High performance liquid chromatography (HPLC) analysis of KG hydrolysate indicated its mannooligosaccharides (MOS) content (656.38 mg/g) with high amounts of DP 5 oligosaccharide. Multi-scale characterization of mannan hydrolysate was done using FTIR and 13C NMR which revealed α and β form of galactose or glucose in MOS, respectively. CM and LBG hydrolysates (1 mg/mL) have shown cytotoxic effect and reduced cell viability of Caco-2 cells by 45% and 62%, respectively. MOS DP (1–4) derived from LBG supported better Lactobacilli biofilm formation as compared to KG hydrolysate containing high DP MOS (5–7). Lactobacilli effectively fermented MOS to generate acetate and propionate as main short chain fatty acids. Lactobacilli produced leucine, isoleucine and valine as branched chain amino acids when grown on LBG hydrolysate.
Hide AbstractEngineering of β-mannanase from Aspergillus niger to increase product selectivity towards medium chain length mannooligosaccharides.
Arunrattanamook, N., Wansuksri, R., Uengwetwanit, T. & Champreda, V. (2020). Journal of Bioscience and Bioengineering, In Press.
Mannooligosaccharides (MOSs) are one of the most commonly used biomass-derived feed additives. The effectiveness of MOS varies with the length of oligosaccharides, medium length MOSs such as mannotetraose and mannopentaose being the most efficient. This study aims at improving specificity of β-mannanase from Aspergillus niger toward the desirable product size through rational-based enzyme engineering. Tyr 42 and Tyr 132 were mutated to Gly to extend the substrate binding site, allowing higher molecular weight MOS to non-catalytically bind to the enzyme. Hydrolysis product content was analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection. Instead of mannobiose, the enzyme variants yielded mannotriose and mannotetraose as the major products, followed by mannobiose and mannopentaose. Overall, 42% improvement in production yield of highly active mannotetraose and mannopentaose was achieved. This validates the use of engineered β-mannanase to selectively produce larger MOS, making them promising candidates for large-scale MOS enzymatic production process.
Hide AbstractProduction of mannose-containing hydrolysates and investigation of their ability to normalize the microflora composition of the gastrointestinal tract of poultry.
Korneeva, O., Anokhina, E., Shuvayeva, G., Isuva, M. & Startseva, S. (2018). International Multidisciplinary Scientific GeoConference: SGEM, 18(6.2), 475-482.
One of the ways to maintain the normal gastrointestinal tract microflora of poultry is to use prebiotic supplements in their feed. Among the prebiotics used in poultry farming, there are additives based on mannooligosaccharides from the cell walls of the yeast Saccharomyces cerevisiae. There are no similar domestic prebiotic drugs available, which determines the necessity and relevance of their development. For the production of mannose-containing hydrolysates, there was studied the process of hydrolysis of mannans of plant raw materials under the influence of the enzyme preparation of Trichoderma harzianum β-mannanase. The production of mannose-containing hydrolysates with the maximum degree of mannans splitting was provided by the dosage of the 15 U/g substrate enzyme and the duration of the process for 4 hours. Qualitative and quantitative analysis of the produced hydrolysates revealed the presence of mannose, mannobiose, mannotriose, mannotetrose, mannohexoses in the amount of, in mg / ml: 29.1, 22.1, 42.2, 19.1 and 4.3, respectively. Studying the prebiotic properties of mannose-containing hydrolysates in vitro showed that the maximum accumulation of Bifidobacterium bifidum biomass on medium with these carbohydrates was observed by the 42nd h of cultivation and correlated with the accumulation of organic acids in the medium. Mannose-containing hydrolysates stimulated the development of B. bifidum to a greater extent than mannose and did not rank below to the known commercial prebiotic - inulin. The study of the effect of mannose-containing hydrolysates in the amount from 0.1 to 1% to the feed weight on the gastrointestinal microflora of chickens with experimental dysbiosis showed that an increase in the number of bifidobacteria and lactic acid bacteria was observed already on the 5th day of the experiment in all the doses tested. Complete normalization of the gastrointestinal microflora composition of poultry was observed when mannose-containing hydrolysates were introduced in the amount of 1% to the feed weight on the 10th day.
Hide AbstractAnalysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function.
Li, A., Laville, E., Tarquis, L., Lombard, V., Ropartz, D., Terrapon, N., Henrissat, B., Guieysse, D., Esque, J., Durand, J., Diego P. & Potocki-Veronese, D. P. (2020). Microbial Genomics, mgen000404.
Mannoside phosphorylases are involved in the intracellular metabolization of mannooligosaccharides, and are also useful enzymes for the in vitro synthesis of oligosaccharides. They are found in glycoside hydrolase family GH130. Here we report on an analysis of 6308 GH130 sequences, including 4714 from the human, bovine, porcine and murine microbiomes. Using sequence similarity networks, we divided the diversity of sequences into 15 mostly isofunctional meta-nodes; of these, 9 contained no experimentally characterized member. By examining the multiple sequence alignments in each meta-node, we predicted the determinants of the phosphorolytic mechanism and linkage specificity. We thus hypothesized that eight uncharacterized meta-nodes would be phosphorylases. These sequences are characterized by the absence of signal peptides and of the catalytic base. Those sequences with the conserved E/K, E/R and Y/R pairs of residues involved in substrate binding would target β-1,2-, β-1,3- and β-1,4-linked mannosyl residues, respectively. These predictions were tested by characterizing members of three of the uncharacterized meta-nodes from gut bacteria. We discovered the first known β-1,4-mannosyl-glucuronic acid phosphorylase, which targets a motif of the Shigella lipopolysaccharide O-antigen. This work uncovers a reliable strategy for the discovery of novel mannoside-phosphorylases, reveals possible interactions between gut bacteria, and identifies a biotechnological tool for the synthesis of antigenic oligosaccharides.
Hide AbstractCharacteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans.
Jana, U. K. & Kango, N. (2020). International Journal of Biological Macromolecules, 149, 931-940.
Mannooligosaccharides (MOS) were derived using Aspergillus oryzae β-mannanase (ManAo) from different mannan-rich agro-wastes, palm kernel cake (PKC), guar gum and copra meal (CM). Guar gum (GG) released higher amount of MOS (56.31% w/w) from which purification of mannobiose (0.68 mg) and mannotriose (1.26 mg) was demonstrated using size-exclusion chromatography. FTIR analysis of mannan hydrolysates showed characteristic peaks in 1200–900 cm−1 region indicating the presence of MOS. 1H & 13C NMR spectra showed presence of anomeric sugar forms of MOS in different mannan hydrolysates. MOS from locust bean gum and guar gum had both α- and β-anomers while PKC and CM had only α-anomer. Growth promotional activities of different MOS were demonstrated using two probiotic Lactobacilli. Besides, enzymatically derived MOS also showed metal (Fe2+) chelating and anti-oxidant activities, wherein best anti-glycating agent was evaluated as MOS from PKC. PKC derived MOS showed highest cytotoxicity (74.19%) against human colon adenocarcinoma cell line (Caco-2). This study demonstrated the prebiotic potential of agro-waste derived MOS and possibility of their utilization as a functional food ingredient.
Hide AbstractCopra meal hydrolysis by the recombinant β-mannanase KMAN-3 and MAN 6.7 expressed in Escherichia coli.
Sritrakul, N., Nitisinprasert, S. & Keawsompong, S. (2020). 3 Biotech, 10(2), 44.
Hydrolysis products of defatted copra meal (DCM) hydrolysis were investigated with either recombinant β-mannanases from Klebsiella oxytoca KUB-CW2-3 (KMAN-3) or Bacillus circulans NT 6.7 (MAN 6.7). Morphological changes and functional groups of solid residues were also determined by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Results revealed that the Michaelis–Menten constant (Km) and maximum velocity (Vmax) values of KMAN-3 on DCM were 2.4 mg/ml and 5.4 U/mg, respectively, while MAN 6.7 recorded Km and Vmax at 2.0 mg/ml and 4.3 U/mg, respectively. Both enzymes efficiently randomly hydrolysed DCM and produced a range of different manno-oligosaccharides (MOS). The profile of hydrolysis products was different for each enzyme used. Main products from hydrolysis of DCM by KMAN-3 and MAN 6.7 were various MOS including mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannose, whereas mannopentaose (M5) was only found from KMAN-3. Amount of M3 produced by KMAN-3 was about three times higher than from MAN 6.7. Total MOS yield for KMAN-3 was 1.5-folds higher than for MAN 6.7. SEM analysis showed that enzymatic hydrolysis with KMAN-3 and MAN 6.7 resulted in deconstruction of the DCM structure which generated a variety of MOS products. FTIR spectra revealed that the properties of both hydrolysed solids were not significantly different compared to the original DCM. Results suggested that KMAN-3 was a promising candidate for production of high MOS content from copra meal.
Hide AbstractPreparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase.
Li, Y. X., Liu, H. J., Shi, Y. Q., Yan, Q. J., You, X. & Jiang, Z. Q. (2020). Food Chemistry, 309, 125709.
To produce manno-oligosaccharides from cassia gum, a mutated glycoside hydrolase family 134 β-mannanase gene (mRmMan134A) from Rhizopus microsporus var. rhizopodiformis F518 was expressed in Pichia pastoris and a high expression level (3680 U mL-1) was obtained through high cell density fermentation. mRmMan134A exhibited maximum activity at pH 5.5 and 50°C. It was then subjected to hydrolyze cassia gum with 70.6% of overall yield of manno-oligosaccharides. From the hydrolysate, seven components (F1-F7) were separated and identified as mannose, mannobiose, galactose, mannotriose, mannotetraose, 61-α-d-galactosyl-β-D-mannobiose, and mannopentaose, respectively. According to in vitro fermentation, the manno-oligosaccharides were able to promote the growth of three Bifidobacterium strains and six Lactobaillus strains with 3.0-fold increment in culture absorbance, and these strains preferred manno-oligosaccharides with degree of polymerization (DP) 2-3 rather than those with DP 4-5. Novel manno-oligosaccharides from cassia gum with promising prebiotic activity were provided in the present study.
Hide AbstractHigh-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation.
Liu, Z., Ning, C., Yuan, M., Yang, S., Wei, X., Xiao, M., Fu, X., Zhu, C. & Mou, H. (2020). Bioresource Technology, 295, 122257.
An engineered thermophilic and acidophilic β-mannanase (ManAK) from Aspergillus kawachii IFO 4308 was highly expressed in Pichia pastoris. Through high cell density fermentation, the maximum yield reached 11,600 U/mL and 15.5 g/L, which is higher than most extreme β-mannanases. The recombinant ManAK was thermostable with a temperature optimum of 80°C, and acid tolerant with a pH optimum of 2.0. ManAK could efficiently degrade locust bean gum, konjac gum, and guar gum into small molecular mannooligosaccharide (<2000 Da), even at high initial substrate concentration (10%), and displayed different Mw distributions in their end products. Docking analysis demonstrated that the catalytic pocket of ManAK could only accommodate a galactopyranosyl residue in subsite -1, which might be responsible for the distinct hydrolysis product compositions from locust bean gum and guar gum. These superior properties of ManAK strongly facilitate mannooligosaccharide preparation and application in food and feed area.
Hide AbstractEconomic production of thermo-active endo β-mannanase for the removal of food stain and production of antioxidant manno-oligosaccharides.
Ismail, S. A., Hassan, A. A. & Emran, M. A. (2019). Biocatalysis and Agricultural Biotechnology, 22, 101387.
β-Mannanases are β-1,4-mannan-glycosidic bonds hydrolyzing enzymes that participate in various biotechnological applications. In the current study, the production of the enzyme was performed by solid state fermentation of rice straw using the locally isolated fungus Trichoderma longibrachiatum RS1 and the production of the enzyme was optimized to reach 89.73U/g dry substrate. The isolated fungus was identified on the base of its cultural and morphological features and by 18S rDNA sequencing. The optimum temperature for the activity of the partially purified enzyme was indicated to be 75°C. Although production of fungal β-mannanases have been previously studied but the production of thermo-active enzymes are still challengeable. The Vmax and Km were 6.2U/mg protein/min and 3.33 mg/mL respectively, indicating the comparatively high affinity of the produced enzyme toward mannan substrates. The thermal stability of the produced enzyme estimated that its half lives were 633.01, 50.77 and 20.25 min−1 at 55, 60 and 65°C respectively. The produced enzyme can be efficiently used in the removal of mannan based food stain. Moreover, the efficiency of the produced enzyme in the production of manno-oligosaccharides by the hydrolysis of mannan polymers was examined. The results indicated the release of 1.8 and 0.66 mg reducing sugar/mL by the hydrolysis of locust bean and guar gum for 2 h with hydrolysis percentage of 27 and 9.9% respectively. Finally, the produced manno-oligosaccharides were examined for their antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl free radical.
Hide AbstractOptimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides.
Álvarez-Cao, M. E., Cerdán, M. E., González-Siso, M. I., & Becerra, M. (2019). Microbial Cell Factories, 18(1), 1-17.
Background: α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. Results: The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-D-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with β-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. Conclusions: ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.
Hide Abstract