Content: | 30 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Ambient |
Physical Form: | Powder |
Stability: | > 10 years under recommended storage conditions |
CAS Number: | 40879-32-1 |
Molecular Formula: | C42H72O36 |
Molecular Weight: | 1153.0 |
Purity: | > 90% |
Substrate For (Enzyme): | Amyloglucosidase, Isopullulanase, Neopullulanase, Pullulanase/Limit-Dextrinase |
This product has been discontinued (read more).
High purity 63-alpha-D-Glucosyl-maltotriosyl-maltotriose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Glycerol Free E-AMGDFPD - Amyloglucosidase (Aspergillus niger) Powder E-AMGFR-500MG - Amyloglucosidase (Aspergillus niger) E-AMGPU - Amyloglucosidase (Rhizopus sp.) E-TSAGS - α-Glucosidase (Bacillus stearothermophilus) (Recombinant) E-MALTS - α-Glucosidase (yeast maltase)
McCleary, B. V., Mangan, D., McKie, V., Cornaggia, C., Ivory, R. & Rooney, E. (2014). Carbohydrate Research, 393, 60-69.
Specific and highly sensitive colourimetric and fluorometric substrate mixtures have been prepared for the measurement of pullulanase and limit-dextrinase activity and assays employing these substrates have been developed. These mixtures comprise thermostable α- and β-glucosidases and either 4,6-O-benzylidene-2-chloro-4-nitrophenyl-β-maltotriosyl (1-6) α-maltotrioside (BzCNPG3G3, 1) as a colourimetric substrate or 4,6-O-benzylidene-4-methylumbelliferyl-β-maltotriosyl (1-6) α-maltotrioside (BzMUG3G3, 2) as a fluorometric substrate. Hydrolysis of substrates 1 and 2 by exo-acting enzymes such as amyloglucosidase, β-amylase and α-glucosidase is prevented by the presence of the 4,6-O-benzylidene group on the non-reducing end D-glucosyl residue. The substrates are not hydrolysed by any α-amylases studied, (including those from Aspergillus niger and porcine pancreas) and are resistant to hydrolysis by Pseudomonas sp. isoamylase. On hydrolysis by pullulanase, the 2-chloro-4-nitrophenyl-β-maltotrioside (3) or 4-methylumbelliferyl-β-maltotrioside (4) liberated is immediately hydrolysed to D-glucose and 2-chloro-4-nitrophenol or 4-methylumbelliferone. The reaction is terminated by the addition of a weak alkaline solution leading to the formation of phenolate ions in solution whose concentration can be determined using either spectrophotometric or fluorometric analysis. The assay procedure is simple to use, specific, accurate, robust and readily adapted to automation.
Hide AbstractVersatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.
Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Hide Abstract