The product has been successfully added to your shopping list.

Azo-Xylan (Birchwood) (Powder)

Play Training Video

00:02   Principle of the Assay Procedure
00:34    Substrate & Kit Description
01:02    Dissolution of Azo-CM-Cellulose
03:10    Precipitant Solution
04:59    Preparation of Buffer Solution
05:10    Assay Procedure
08:49    Calculation

 
Product code: S-AXBP
€245.00

3 g

Prices exclude VAT

Available for shipping

North American customers click here
Content: 3 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 2 years under recommended storage conditions
Substrate For (Enzyme): endo-1,4-β-Xylanase
Assay Format: Spectrophotometer, Petri-dish (Qualitative)
Detection Method: Absorbance
Wavelength (nm): 590
Reproducibility (%): ~ 7%

High purity dyed, soluble Azo-Xylan (Birchwood) for the measurement of enzyme activity, for research, biochemical enzyme assays and in vitro diagnostic analysis.

Substrate for the specific assay of endo-1,4-β-D-xylanase.

Please note the video above shows the protocol for assay of endo-cellulase using Azo-CM cellulose. The procedure for the assay of endo-1,4-β-xylanase using Azo-Xylan (Birchwood) (Powder) is equivalent to this.

View other related products for more enzyme substrates.

Documents
Certificate of Analysis
Safety Data Sheet
FAQs Assay Protocol Data Calculator
Publications
Megazyme publication
Novel substrates for the automated and manual assay of endo-1,4-β-xylanase.

Mangan, D., Cornaggia, C., Liadova, A., McCormack, N., Ivory, R., McKie, V. A., Ormerod, A. & McCleary, D. V. (2017). Carbohydrate Research, 445, 14-22.

endo-1,4-β-Xylanase (EC 3.2.1.8) is employed across a broad range of industries including animal feed, brewing, baking, biofuels, detergents and pulp (paper). Despite its importance, a rapid, reliable, reproducible, automatable assay for this enzyme that is based on the use of a chemically defined substrate has not been described to date. Reported herein is a new enzyme coupled assay procedure, termed the XylX6 assay, that employs a novel substrate, namely 4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside. The development of the substrate and associated assay is discussed here and the relationship between the activity values obtained with the XylX6 assay versus traditional reducing sugar assays and its specificity and reproducibility were thoroughly investigated.

Hide Abstract
Publication

Production Of Cellulosic Enzymes By Aspergillus Niger And Hydrolysis Of Cellulosic Materials.

Bakare, V., Abdulsalami, M. S., Ndibe, T. O., Ejuama, C. K. & Effiong, T. (2022). Global Journal of Pure and Applied Sciences, 28(2), 121-129.

Microorganisms such as fungi can fragment carbon compounds by hydrolytic enzymes. The filamentous fungus, Aspergillus niger is now mostly considered because of its ubiquitous nature, non-fastidious nutritional requirements and it is classified generally as safe. This study was aimed at the production of cellulosic enzymes by A. niger and hydrolytic degradation of cellulosic materials by these enzymes. Standard methods were employed in soil samples collection, isolation of A. niger from the soils and their screening for enzyme production. Results showed that the A. niger isolates exhibited considerable activities of degrading and hydrolyzing cellulose in the agar media. The highest FPase, cellulase and xylanase activities were obtained from white saw dust with concentrations of 0.4059 U/ml, 0.7695U/ml and 1.3488 U/ml respectively. Also, results showed high enzyme activity at pH 6 (0.52U/ml) and temperature of 30ºC (0.72U/ml). Acid hydrolysis of the cellulosic substrates resulted to the release of 6.5% total sugar from white sawdust. The findings of this study revealed that the enzymes produced by A. niger hydrolyzed cellulosic materials but acid is more efficient than the enzymes in the hydrolysis and release of total sugar from cellulosic materials. This study recommends that cellulolytic enzymes used in the industries should be produced locally using filamentous fungus such as Aspergillus niger and cellulosic materials as carbon source.

Hide Abstract
Publication

PACER: a novel 3D plant cell wall model for the analysis of non-catalytic and enzymatic responses.

Monschein, M., Jurak, E., Paasela, T., Koitto, T., Lambauer, V., Pavicic, M., Enjalbert, T., Dumon, C. & Master, E. R. (2022). Biotechnology for Biofuels and Bioproducts, 15(1), 1-11.

Background: Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components. Results: We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed. Conclusions: The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.

Hide Abstract
Publication

Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus Myceliophthora thermophila.

Zhang, C., Li, N., Rao, L., Li, J., Liu, Q. & Tian, C. (2022). Microbiology Spectrum, e02321-21.

Myceliophthora thermophila is a thermophilic fungus with great potential in biorefineries and biotechnology. The base editor is an upgraded version of the clustered regularly interspaced short palindromic repeats (CRISPR)-dependent genome-editing tool that introduces precise point mutations without causing DNA double-strand breaks (DSBs) and has been used in various organisms but rarely in filamentous fungi, especially thermophilic filamentous fungi. Here, for the first time, we constructed three cytosine base editors (CBEs) in M. thermophila, namely, evolved apolipoprotein B mRNA-editing enzyme catalytic subunit 1 (APOBEC1) cytosine base editor 4 max (Mtevo-BE4max), bacteriophage Mu Gam protein cytosine base editor 4 max (MtGAM-BE4max), and evolved CDA1 deaminase cytosine base editor (Mtevo-CDA1), and efficiently inactivated genes by precisely converting three codons (CAA, CAG, and CGA) into stop codons without DSB formation. The Mtevo-CDA1 editor with up to 92.6% editing efficiency is a more suitable tool for cytosine base editing in thermophilic fungi. To investigate the function of each motif of the cellulase transcription factor M. thermophila CLR-2 (MtCLR-2), we used the Mtevo-CDA1 editor. The fungal-specific motif of MtCLR-2 was found to be strongly involved in cellulase secretion, conidium formation, hyphal branching, and colony formation. Mutation of the fungus-specific motif caused significant defects in these characteristics. Thus, we developed an efficient thermophilic fungus-compatible base-editing system that could also be used for genetic engineering in other relevant filamentous fungi.

Hide Abstract
Publication

The chimeric GaaR-XlnR transcription factor induces pectinolytic activities in the presence of D-xylose in Aspergillus niger.

Kun, R. S., Garrigues, S., Di Falco, M., Tsang, A. & de Vries, R. P. (2021). Applied Microbiology and Biotechnology, 105(13), 5553-5564.

Aspergillus niger is a filamentous fungus well known for its ability to produce a wide variety of pectinolytic enzymes, which have many applications in the industry. The transcriptional activator GaaR is induced by 2-keto-3-deoxy-L-galactonate, a compound derived from D-galacturonic acid, and plays a major role in the regulation of pectinolytic genes. The requirement for inducer molecules can be a limiting factor for the production of enzymes. Therefore, the generation of chimeric transcription factors able to activate the expression of pectinolytic genes by using underutilized agricultural residues would be highly valuable for industrial applications. In this study, we used the CRISPR/Cas9 system to generate three chimeric GaaR-XlnR transcription factors expressed by the xlnR promoter by swapping the N-terminal region of the xylanolytic regulator XlnR to that of the GaaR in A. niger. As a test case, we constructed a PpgaX-hph reporter strain to evaluate the alteration of transcription factor specificity in the chimeric mutants. Our results showed that the chimeric GaaR-XlnR transcription factor was induced in the presence of D-xylose. Additionally, we generated a constitutively active GaaR-XlnR V756F version of the most efficient chimeric transcription factor to better assess its activity. Proteomics analysis confirmed the production of several pectinolytic enzymes by ΔgaaR mutants carrying the chimeric transcription factor. This correlates with the improved release of D-galacturonic acid from pectin by the GaaR-XlnR V756F mutant, as well as by the increased L-arabinose release from the pectin side chains by both chimeric mutants under inducing condition, which is required for efficient degradation of pectin.

Hide Abstract
Publication

Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs.

Ribeiro, G. O., Gruninger, R. J., Jones, D. R., Beauchemin, K. A., Yang, W. Z., Wang, Y., Abbott, D. W., Tsang, A. & McAllister, T. A. (2020). Journal of Animal Science, 98(5), skaa116.

The objective of this study was to evaluate the effect of ammonia fiber expansion (AFEX)-treated wheat straw pellets and a recombinant fibrolytic enzyme on the rumen microbiome, rumen fermentation parameters, total tract diet digestibility, and performance of lambs. Eight rumen cannulated wethers and 60 lambs (n = 15 per diet, 8 rams and 7 ewes) were used in a replicated 4 × 4 Latin square design digestibility study and a complete randomized growth performance study, respectively. Four treatment diets were arranged in a 2 × 2 factorial structure with AFEX wheat straw (0% or 30% AFEX straw pellets on a dietary DM basis replacing alfalfa hay pellets) and fibrolytic enzyme (with or without XYL10C, a β-1,4-xylanase, from Aspergillus niger) as main factors. Enzyme was applied at 100 mg/kg of diet DM, 22 h before feeding. Rumen bacteria diversity Pielou evenness decreased (P = 0.05) with AFEX compared with the control diet and increased (P < 0.01) with enzyme. Enzyme increased (P ≤ 0.02) the relative abundancies of Prevotellaceae UCG-004, Christensenellaceae R-7 group, Saccharofermentans, and uncultured Kiritimatiellaeota. Total protozoa counts were greater (P ≤ 0.04) in the rumen of lambs fed AFEX compared with control, with enzyme reducing (P ≤ 0.05) protozoa counts for both diets. Digestibility of DM did not differ (P > 0.10) among diets, but digestibility of CP was reduced (P = 0.001), and digestibility of NDF and ADF increased (P < 0.05) as AFEX replaced alfalfa. Compared with control, AFEX promoted greater DMI (P = 0.003) and improved ADG up to 42 d on feed (P = 0.03), but not (P = 0.51) over the full ~94-d experiment. Consequently, overall G:F was reduced (P = 0.04) for AFEX when compared with control (0.188 vs. 0.199), but days on feed were lower (P = 0.04) for AFEX (97 vs. 91 d). Enzyme improved DMI of AFEX up to day 70 (P = 0.01), but did not affect DMI of the control diet. Enzyme addition improved ADG of lambs fed both diets in the first 28 d (P = 0.02), but not over the entire feeding period (P ≥ 10). As a result, G:F was improved with enzyme for the first 28 d (P = 0.04), but not overall (P = 0.45). This study shows that AFEX-treated wheat straw can replace alfalfa hay with no loss in lamb growth performance. Additionally, the enzyme XYL10C altered the rumen microbiome and improved G:F in the first month of the feeding.

Hide Abstract
Publication

Innovative microscale workflow from fungi cultures to Cell Wall‐Degrading Enzyme screening.

Raulo, R., Heuson, E., Siah, A., Phalip, V. & Froidevaux, R. (2019). Microbial Biotechnology, 12(6), 1286-1292.

This study aimed at developing a complete miniaturized high‐throughput screening workflow for the evaluation of the Cell Wall‐Degrading Enzyme (CWDE) activities produced by any fungal strain directly cultivated on raw feedstock in a submerged manner. In this study, wheat straw was selected as model substrate as it represents an important carbon source but yet poorly valorised to yield high added value products. Fungi were grown in a microbioreactor in a high‐throughput (HT) way to replace the fastidious shaking flask cultivations. Both approaches were compared in order to validate our new methodology. The range of CWDE activities produced from the cultures was assayed using AZO‐died and pNP‐linked substrates in an SBS plate format using a Biomek FXp pipetting platform. As highlighted in this study, it was shown that the CWDE activities gathered from the microbioreactor cultivations were similar or higher to those obtained from shake flasks cultures, with a lower standard deviation on the measured values, making this new method much faster than the traditional one and suitable for HT CWDE production thanks to its pipetting platform compatibility. Also, the results showed that the enzymatic activities measured were the same when doing the assay manually or using the automated method.

Hide Abstract
Publication

Enzymatic potential and biosurfactant production by endophytic fungi from mangrove forest in Southeastern Brazil.

Martinho, V., dos Santos Lima, L. M., Barros, C. A., Ferrari, V. B., Passarini, M. R. Z., Santos, L. A., de Souza Debastianes, F. L., Lacava, P. T. & de Vasconcellos, S. P. (2019). AMB Express, 9(1), 1-8.

Microbial activity is the main route for cycling mangrove nutrients. In general, microorganisms have abilities to degrade lignocellulosic compounds. Among the biotechnological potential of the microbiota from mangroves, it is noteworthy about endophytic fungi, which can be considered as effective sources of different bioactive compounds. In this sense, thirty (30) endophytic fungi were isolated from mangrove forest sampling Cananeia, SP, Brazil. These microorganisms were analyzed about their enzymatic activities including: lignin peroxidase EC 1.11.1.14, manganese peroxidase EC 1.11.1.13 and laccase EC 1.10.3.2, as well endo-cellulase EC 3.2.1.4 and endo-xylanase EC 3.2.1.8. Besides that, production of bioactive secondary metabolites like biosurfactant and/or bioemulsifier was also investigated. As results, nineteen (19) isolates were selected about their ligninolytic abilities, nine (9) of them about cellulase activity and thirteen (13) showed xylanase abilities. The fungal isolate named as 3(3), characterized as Fusarium sambucinum, showed a prominent lignin peroxidase (42.4 U L−1) and manganese peroxidase (23.6 U L−1) activities. The isolate 63.1, also related to Fusarium sp. genera, was selected about its laccase activity (41.5 U L−1). From all the investigated fungi, the isolate 47(4) Trichoderma camerunense was selected about its cellulolytic and xylanolytic activities, showing 45.23 and 26.09 U mL−1, respectively. The same fungi also showed biosurfactant ability demonstrated by superficial tension decreasing to 38 mN/m. In addition, fifteen (15) fungi exhibited bioemulsifier activity, with E24 values up to 62.8%.

Hide Abstract
Publication
Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation.

Feng, G., Flanagan, B. M., Mikkelsen, D., Williams, B. A., Yu, W., Gilbert, R. G. & Gidley, M. J. (2018). Scientific Reports, 8(1), 4546.

Recent studies show that a single or small number of intestinal microbes can completely degrade complex carbohydrates. This suggests a drive towards competitive utilisation of dietary complex carbohydrates resulting in limited microbial diversity, at odds with the health benefits associated with a diverse microbiome. This study investigates the enzymatic metabolism of wheat and rye arabinoxylans (AX) using in vitro fermentation, with a porcine faecal inoculum. Through studying the activity of AX-degrading enzymes and the structural changes of residual AX during fermentation, we show that the AX-degrading enzymes are mainly cell-associated, which enables the microbes to utilise the AX competitively. However, potential for cross-feeding is also demonstrated to occur by two distinct mechanisms: (1) release of AX after partial degradation by cell-associated enzymes, and (2) release of enzymes during biomass turnover, indicative of co-operative AX degradation. This study provides a model for the combined competitive-co-operative utilisation of complex dietary carbohydrates by gut microorganisms.

Hide Abstract
Publication
Optimization of Xylanase Production from Fermentation of Water Hyacinth (Eichhornia crassipes) using Trichoderma species.

Udeh, C. B., Ameh, J. B., Ado, S. A. & Okoduwa, S. I. R. (2017). Journal of Biotechnology Research, 3(3), 15-24.

Background: In the present study, optimized cultural conditions for enhanced production of xylanase from local soil isolate of Trichoderma species, using water hyacinth as a substrate in submerged culture fermentation is presented. Method: The Megazyme assay method was used for endo 1, 4-β-xylanase using Azo-xylan (Birchwood). Results: A continuous increase in xylanase production was observed with increasing level of substrate concentration in the medium and highest production was obtained with water hyacinth at 6% w/v level. Maximum xylanase production was achieved with a pH 5.0, incubation temperature of 30°C and agitation rate of 150 rpm. The highest production was achieved on day five of fermentation at optimum parameters under study. Conclusion: The study showed that production of xylanase can be cost effective using water hyacinth and can be implored on large scale for industrial applications.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Azo-Galactan Potato S-AGALP
Azo-Galactan (Potato)
€259.00
Azo-CM-Cellulose Powder S-ACMC
Azo-CM-Cellulose (Powder)
€220.00
Polygalacturonic Acid Citrus Pectin P-PGACIT
Polygalacturonic Acid (from Citrus Pectin)
€131.00
Oligo-alpha-1,6-Glucosidase plus beta-Galactosidase E-BGOG
Oligo-α-1,6-Glucosidase plus β-Galactosidase
€216.00
Protazyme OL Tablets T-PROL
Protazyme OL Tablets
€374.00
Protazyme AK Tablets T-PRAK
Protazyme AK Tablets
€344.00
Galactazyme Tablets T-GLZ
Galactazyme Tablets
€356.00
Amyloglucosidase Aspergillus niger E-AMGFR
Amyloglucosidase (Aspergillus niger)
€572.00