Content: | 30 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Ambient |
Physical Form: | Powder |
Stability: | > 2 years under recommended storage conditions |
CAS Number: | 84666-93-3 |
Molecular Formula: | C25H42O21 |
Molecular Weight: | 678.6 |
Purity: | > 95% |
Substrate For (Enzyme): | endo-1,4-β-Xylanase, α-Arabinofuranosidase |
High purity 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) for use in research, biochemical enzyme assays and in vitro diagnostic analysis. It can be used as an analytical standard or as a substrate to help characterise the activities of arabinoxylan degrading enzymes including endo-xylanase, β-xylosidase and α-L-arabinofuranosidase. This compound was prepared by the controlled enzymatic hydrolysis of wheat arabinoxylan.
Browse more available oligosaccharides for research.
Arabinoxylan source and xylanase specificity influence the production of oligosaccharides with prebiotic potential.
Rudjito, R. C., Jiménez-Quero, A., Muñoz, M. D. C. C., Kuil, T., Olsson, L., Stringer, M. A., Krogh, K. B. R. M., Eklof, J. & Vilaplana, F. (2023). Carbohydrate Polymers, 320, 121233.
Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of β-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS). The GH10 xylanase from Aspergillus aculeatus (AcXyn10A) and GH11 from Thermomyces lanuginosus (TlXyn11) showed the highest activity, producing larger amounts of small oligosaccharides in shorter time. The GH8 xylanase from Bacillus sp. (BXyn8) produced linear xylooligosaccharides and was most restricted by arabinose substitution, whereas GH5_34 from Gonapodya prolifera (GpXyn5_34) required arabinose substitution and produced longer (A)XOS substituted on the reducing end. The complementary substrate specificity of BXyn8 and GpXyn5_34 revealed how arabinoses were distributed along the xylan backbones. This study demonstrates that AX source and xylanase specificity influence the production of oligosaccharides with specific structures, which in turn impacts the growth of specific bacteria (Bacteroides ovatus and Bifidobacterium adolescentis) and the production of beneficial metabolites (short-chain fatty acids).
Hide AbstractCloning of an α-L-Arabinofuranosidase and Characterization of Its Action on Mono-and Di-Substituted Xylopyranosyl Units.
Wong, D. W. & Batt, S. (2022). Advances in Enzyme Research, 10(4), 75-82.
An α-L-arabinofuranosidase (ARF) gene of 1503 bp was synthesized, subcloned into pET26b vector, and expressed in Escherichia coli. The enzyme was purified in active form, and consisted of 500 amino acid residues, corresponding to 55 kD based on SDS-PAGE. The affinity-purified protein was characterized using arabinofuranosyl xylooligosaccharides (AXOS) as substrates. The pH effect was investigated showing an optimum at pH 5.5. XaARF catalyzed the cleavage of arabinose at C3 of the xylopyranosyl unit efficiently if the arabinofuranosyl substitution was at the terminal compared to internal xylose units. The enzyme was able to act on di-substituted xylopyranosyl units with the first cleavage at C3 followed by C2 linkages.
Hide AbstractSelfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow.
Liu, N., Gagnot, S., Denis, Y., Byrne, D., Faulds, C., Fierobe, H. P. & Perret, S. (2022). Biotechnology for Biofuels and Bioproducts, 15(1), 1-16.
Background: Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides. Results: Complete extracellular arabinoxylan degradation was long thought to be required to fuel the bacterium during this plant cell wall deconstruction stage. We discovered and characterized a second system of “arabinoxylan” degradation in R. cellulolyticum, which challenged this paradigm. This “selfish” system is composed of an ABC transporter dedicated to the import of large and possibly acetylated arabinoxylodextrins, and a set of four glycoside hydrolases and two esterases. These enzymes show complementary action modes on arabinoxylo-dextrins. Two α-L-arabinofuranosidases target the diverse arabinosyl side chains, and two exo-xylanases target the xylo-oligosaccharides backbone either at the reducing or the non-reducing end. Together, with the help of two different esterases removing acetyl decorations, they achieve the depolymerization of arabinoxylo-dextrins in arabinose, xylose and xylobiose. The in vivo study showed that this new system is strongly beneficial for the fitness of the bacterium when grown on arabinoxylan, leading to the conclusion that a part of arabinoxylan degradation is achieved in the cytosol, even if monosaccharides are efficiently provided by the cellulosomes in the extracellular space. These results shed new light on the strategies used by anaerobic primary degrader bacteria to metabolize highly decorated arabinoxylan in competitive environments. Conculsion: The primary degrader model Ruminiclostridium cellulolyticum has developed a “selfish” strategy consisting of importing into the bacterium, large arabinoxylan-dextrin fractions released from a partial extracellular deconstruction of arabinoxylan, thus complementing its efficient extracellular arabinoxylan degradation system. Genetic studies suggest that this system is important to support fitness and survival in a competitive biotope. These results provide a better understanding of arabinoxylan catabolism in the primary degrader, with biotechnological application for synthetic microbial community engineering for the production of commodity chemicals from lignocellulosic biomass.
Hide AbstractRapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry.
Wang, J., Zhao, J., Nie, S., Xie, M. & Li, S. (2021). Food Hydrocolloids, 124, 107237.
The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) in glycan was limited due to their poor ionization efficiency, compared with biomolecules such as proteins and peptides. Aiming to improve the ionization efficiency and simplify preparation procedure simultaneously during MALDI MS analysis, an on-target derivatization method using 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) as matrix was employed and it was conducted both in the positive and negative ion MALDI TOF MS. Results indicated that after on-target derivatization, the ions generated had substantially improved S/N ratios and sensitivity in the tandem mass spectra. The B/Y- type ions of 3-AQ-labeled glycans could be easily recognized, and cross-ring A- type ions provided additional information to reveal the linkage patterns. Specifically, positive ion mass spectra with protonated adduct as precursor ion produced a simple fragmentation pattern benefited for sequencing and observation of branches. Furthermore, this method was successfully applied in polysaccharides analysis, including arabinoxylan, xylan, arabinogalactan and dextran after enzymatic or acid degradation. This study demonstrated that it was feasible to analyze higher molecular weight polysaccharides by MALDI TOF MS using 3-AQ/CHCA matrix through appropriate hydrolysis, and it allowed much efficient structural interpretation with increased sensitivity and characteristic fragment ions.
Hide AbstractLignocellulose degradation for the bioeconomy: the potential of enzyme synergies between xylanases, ferulic acid esterase and laccase for the production of arabinoxylo-oligosaccharides.
Schmitz, E., Leontakianakou, S., Norlander, S., Karlsson, E. N. & Adlercreutz, P. (2021). Bioresource Technology, 343, 126114.
The success of establishing bioeconomies replacing current economies based on fossil resources largely depends on our ability to degrade recalcitrant lignocellulosic biomass. This study explores the potential of employing various enzymes acting synergistically on previously pretreated agricultural side streams (corn bran, oat hull, soluble and insoluble oat bran). Degrees of synergy (oligosaccharide yield obtained with the enzyme combination divided by the sum of yields obtained with individual enzymes) of up to 88 were obtained. Combinations of a ferulic acid esterase and xylanases resulted in synergy on all substrates, while a laccase and xylanases only acted synergistically on the more recalcitrant substrates. Synergy between different xylanases (glycoside hydrolase (GH) families 5 and 11) was observed particularly on oat hulls, producing a yield of 57%. The synergistic ability of the enzymes was found to be partly due to the increased enzyme stability when in combination with the substrates.
Hide AbstractMultiple transporters and glycoside hydrolases are involved in arabinoxylan-derived oligosaccharide utilization in Bifidobacterium pseudocatenulatum.
Saito, Y., Shigehisa, A., Watanabe, Y., Tsukuda, N., Moriyama-Ohara, K., Hara, T., Matsumoto, S., Tsuji, H. & Matsuki, T. (2020). Applied and Environmental Microbiology, 86(24).
Arabinoxylan hydrolysates (AXH) are the hydrolyzed products of the major components of the dietary fiber arabinoxylan. AXH include diverse oligosaccharides varying in xylose polymerization and side residue modifications with arabinose at the O-2 and/or O-3 position of the xylose unit. Previous studies have reported that AXH exhibit prebiotic properties on gut bifidobacteria; moreover, several adult-associated bifidobacterial species (e.g., Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum) are known to utilize AXH. In this study, we tried to elucidate the molecular mechanisms of AXH utilization by Bifidobacterium pseudocatenulatum, which is a common bifidobacterial species found in adult feces. We performed transcriptomic analysis of B. pseudocatenulatum YIT 4072T, which identified three upregulated gene clusters during AXH utilization. The gene clusters encoded three sets of ATP-binding cassette (ABC) transporters and five enzymes belonging to glycoside hydrolase family 43 (GH43). By characterizing the recombinant proteins, we found that three solute-binding proteins of ABC transporters showed either broad or narrow specificity, two arabinofuranosidases hydrolyzed either single- or double-decorated arabinoxylooligosaccharides, and three xylosidases exhibited functionally identical activity. These data collectively suggest that the transporters and glycoside hydrolases, encoded in the three gene clusters, work together to utilize AXH of different sizes and with different side residue modifications. Thus, our study sheds light on the overall picture of how these proteins collaborate for the utilization of AXH in B. pseudocatenulatum and may explain the predominance of this symbiont species in the adult human gut.
Hide AbstractEnzyme synergy for the production of arabinoxylo-oligosaccharides from highly substituted arabinoxylan and evaluation of their prebiotic potential.
Bhattacharya, A., Ruthes, A., Vilaplana, F., Karlsson, E. N., Adlecreutz, P. & Stålbrand, H. (2020). LWT, 131, 109762.
Wheat bran arabinoxylan can be converted by enzymatic hydrolysis into short arabinoxylo-oligosaccharides (AXOS) with prebiotic potential. Alkali extraction of arabinoxylan from wheat-bran offers advantages in terms of yield and results in arabinoxylan with highly-substituted regions which has been a challenge to hydrolyse using endoxylanases. We show that this hurdle can be overcome by selecting an arabinoxylanase that attacks these regions. The yield of AXOS can be increased by enzyme synergy, involving the hydrolysis of some arabinoxylan side groups. Thus, arabinoxylanase (CtXyl5At) from Clostridium thermocellum, belonging to subfamily 34 of glycoside hydrolase (GH) family 5 was investigated pertaining to its specificity for highly-substituted regions in the arabinoxylan-backbone. CtXyl5At preferentially hydrolysed the water-soluble fraction of alkali-extracted arabinoxylan. AXOS with DP 2-4 were determined as major products from CtXyl5At catalyzed hydrolysis. Increase in AXOS yield was observed with enzyme synergy, involving an initial treatment of soluble arabinoxylan with a GH43 α-l-arabinofuranosidase from Bifidobacterium adolescentis termed BaAXHd3 (30°C, 6h), followed by hydrolysis with CtXyl5At (50°C, 24h). The prebiotic potential of AXOS was shown by growth analysis using the human gut bacteria Bifidobacterium adolescentis ATCC 15703 and Roseburia hominis DSM 6839. Importantly, AXOS were utilized by the bacteria and short-chain fatty acids were produced.
Hide AbstractSimultaneous determination of cereal monosaccharides, xylo-and arabinoxylo-oligosaccharides and uronic acids using HPAEC-PAD.
Alyassin, M., Campbell, G. M., O'Neill, H. M. & Bedford, M. R. (2020). Food Chemistry, 315, 126221.
Xylo- and arabinoxylo-oligosaccharides (XOS and AXOS) are of interest for their prebiotic activity. The production of these oligomers might be accompanied with monosaccharides. The measurement of both oligosaccharides and monosaccharides usually requires two methods. The current work presents an HPAEC-PAD method based on gradient elution of aqueous solvents sodium hydroxide and sodium acetate, in contrast to conventional isocratic elution, for the simultaneous separation of 16 standards of monosaccharides, xylo-oligosaccharides, arabinoxylo-oligosaccharides and uronic acids using CarboPac PA 200 column. The presented method showed a stable baseline and high-resolution separation of the standards. The method showed acceptable accuracy and precision. Limits of Detection and Quantitation (LOD and LOQ) were estimated for all the standards. The method was applied to measure the activity of a commercial endoxylanase on wheat bran; a steady release of xylose monosaccharide was observed. Enzyme action on oligosaccharide standards showed a preference for the larger oligosaccharides.
Hide AbstractStrategy for structural elucidation of polysaccharides: elucidation of a maize mucilage that harbors diazotrophic bacteria.
Amicucci, M. J., Galermo, A. G., Guerrero, A., Treves, G., Nandita, E., Kailemia, M. J., Higdon, S. M., Pozzo, T., Labavitch, J. M., Bennett, A. B. & Lebrilla, C. B. (2019). Analytical Chemistry, 91(11), 7254-7265.
The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated by a polysaccharide, whose complicated structure has been previously unknown. In this report, we present the characterization of the maize polysaccharide by employing new analytical strategies combining chemical depolymerization, oligosaccharide sequencing, and monosaccharide and glycosidic linkage quantitation. The mucilage contains a single heterogeneous polysaccharide composed of a highly fucosylated and xylosylated galactose backbone with arabinan and mannoglucuronan branches. This unique polysaccharide structure may select for the diazotrophic community by containing monosaccharides and linkages that correspond to the glycosyl hydrolases associated with the microbial community. The elucidation of this complicated structure illustrates the power of the analytical methods, which may serve as a general platform for polysaccharide analysis in the future.
Hide AbstractMechelke, M., Koeck, D. E., Broeker, J., Roessler, B., Krabichler, F., Schwarz, W. H., Zverlov, V. V. & Liebl, W. (2017). Journal of Biotechnology, 257, 122-130.
Herbinix hemicellulosilytica is a newly isolated, gram-positive, anaerobic bacterium with extensive hemicellulose-degrading capabilities obtained from a thermophilic biogas reactor. In order to exploit its potential as a source for new industrial arabinoxylan-degrading enzymes, six new thermophilic xylanases, four from glycoside hydrolase family 10 (GH10) and two from GH11, three arabinofuranosidases (1x GH43, 2x GH51) and one β-xylosidase (GH43) were selected. The recombinantly produced enzymes were purified and characterized. All enzymes were active on different xylan-based polysaccharides and most of them showed temperature-vs-activity profiles with maxima around 55–65°C. HPAEC-PAD analysis of the hydrolysates of wheat arabinoxylan and of various purified xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) was used to investigate their substrate and product specificities: among the GH10 xylanases, XynB showed a different product pattern when hydrolysing AXOS compared to XynA, XynC, and XynD. None of the GH11 xylanases was able to degrade any of the tested AXOS. All three arabinofuranosidases, ArfA, ArfB and ArfC, were classified as type AXH-m,d enzymes. None of the arabinofuranosidases was able to degrade the double-arabinosylated xylooligosaccharides XA2+3XX. β-Xylosidase XylA (GH43) was able to degrade unsubstituted XOS, but showed limited activity to degrade AXOS.
Hide Abstract