The product has been successfully added to your shopping list.

33-α-L-Arabinofuranosyl-xylotetraose (XA3XX)

33-alpha-L-Arabinofuranosyl-xylotetraose XA3XX O-XA3XX
Product code: O-XA3XX
€164.00

30 mg

Prices exclude VAT

Available for shipping

Content: 30 mg
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 10 years under recommended storage conditions
CAS Number: 84666-93-3
Molecular Formula: C25H42O21
Molecular Weight: 678.6
Purity: > 95%
Substrate For (Enzyme): endo-1,4-β-Xylanase, α-Arabinofuranosidase

High purity 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) for use in research, biochemical enzyme assays and in vitro diagnostic analysis. It can be used as an analytical standard or as a substrate to help characterise the activities of arabinoxylan degrading enzymes including endo-xylanase, β-xylosidase and α-L-arabinofuranosidase. This compound was prepared by the controlled enzymatic hydrolysis of wheat arabinoxylan.

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Publication

Enzyme synergy for the production of arabinoxylo-oligosaccharides from highly substituted arabinoxylan and evaluation of their prebiotic potential.

Bhattacharya, A., Ruthes, A., Vilaplana, F., Karlsson, E. N., Adlecreutz, P. & Stålbrand, H. (2020). LWT, 131, 109762.

Wheat bran arabinoxylan can be converted by enzymatic hydrolysis into short arabinoxylo-oligosaccharides (AXOS) with prebiotic potential. Alkali extraction of arabinoxylan from wheat-bran offers advantages in terms of yield and results in arabinoxylan with highly-substituted regions which has been a challenge to hydrolyse using endoxylanases. We show that this hurdle can be overcome by selecting an arabinoxylanase that attacks these regions. The yield of AXOS can be increased by enzyme synergy, involving the hydrolysis of some arabinoxylan side groups. Thus, arabinoxylanase (CtXyl5At) from Clostridium thermocellum, belonging to subfamily 34 of glycoside hydrolase (GH) family 5 was investigated pertaining to its specificity for highly-substituted regions in the arabinoxylan-backbone. CtXyl5At preferentially hydrolysed the water-soluble fraction of alkali-extracted arabinoxylan. AXOS with DP 2-4 were determined as major products from CtXyl5At catalyzed hydrolysis. Increase in AXOS yield was observed with enzyme synergy, involving an initial treatment of soluble arabinoxylan with a GH43 α-l-arabinofuranosidase from Bifidobacterium adolescentis termed BaAXHd3 (30°C, 6h), followed by hydrolysis with CtXyl5At (50°C, 24h). The prebiotic potential of AXOS was shown by growth analysis using the human gut bacteria Bifidobacterium adolescentis ATCC 15703 and Roseburia hominis DSM 6839. Importantly, AXOS were utilized by the bacteria and short-chain fatty acids were produced.

Hide Abstract
Publication

Simultaneous determination of cereal monosaccharides, xylo-and arabinoxylo-oligosaccharides and uronic acids using HPAEC-PAD.

Alyassin, M., Campbell, G. M., O'Neill, H. M. & Bedford, M. R. (2020). Food Chemistry, 315, 126221.

Xylo- and arabinoxylo-oligosaccharides (XOS and AXOS) are of interest for their prebiotic activity. The production of these oligomers might be accompanied with monosaccharides. The measurement of both oligosaccharides and monosaccharides usually requires two methods. The current work presents an HPAEC-PAD method based on gradient elution of aqueous solvents sodium hydroxide and sodium acetate, in contrast to conventional isocratic elution, for the simultaneous separation of 16 standards of monosaccharides, xylo-oligosaccharides, arabinoxylo-oligosaccharides and uronic acids using CarboPac PA 200 column. The presented method showed a stable baseline and high-resolution separation of the standards. The method showed acceptable accuracy and precision. Limits of Detection and Quantitation (LOD and LOQ) were estimated for all the standards. The method was applied to measure the activity of a commercial endoxylanase on wheat bran; a steady release of xylose monosaccharide was observed. Enzyme action on oligosaccharide standards showed a preference for the larger oligosaccharides.

Hide Abstract
Publication

Strategy for structural elucidation of polysaccharides: elucidation of a maize mucilage that harbors diazotrophic bacteria.

Amicucci, M. J., Galermo, A. G., Guerrero, A., Treves, G., Nandita, E., Kailemia, M. J., Higdon, S. M., Pozzo, T., Labavitch, J. M., Bennett, A. B. & Lebrilla, C. B. (2019). Analytical Chemistry, 91(11), 7254-7265.

The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated by a polysaccharide, whose complicated structure has been previously unknown. In this report, we present the characterization of the maize polysaccharide by employing new analytical strategies combining chemical depolymerization, oligosaccharide sequencing, and monosaccharide and glycosidic linkage quantitation. The mucilage contains a single heterogeneous polysaccharide composed of a highly fucosylated and xylosylated galactose backbone with arabinan and mannoglucuronan branches. This unique polysaccharide structure may select for the diazotrophic community by containing monosaccharides and linkages that correspond to the glycosyl hydrolases associated with the microbial community. The elucidation of this complicated structure illustrates the power of the analytical methods, which may serve as a general platform for polysaccharide analysis in the future.

Hide Abstract
Publication
Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica—six new xylanases, three arabinofuranosidases and one xylosidase.

Mechelke, M., Koeck, D. E., Broeker, J., Roessler, B., Krabichler, F., Schwarz, W. H., Zverlov, V. V. & Liebl, W. (2017). Journal of Biotechnology, 257, 122-130.

Herbinix hemicellulosilytica is a newly isolated, gram-positive, anaerobic bacterium with extensive hemicellulose-degrading capabilities obtained from a thermophilic biogas reactor. In order to exploit its potential as a source for new industrial arabinoxylan-degrading enzymes, six new thermophilic xylanases, four from glycoside hydrolase family 10 (GH10) and two from GH11, three arabinofuranosidases (1x GH43, 2x GH51) and one β-xylosidase (GH43) were selected. The recombinantly produced enzymes were purified and characterized. All enzymes were active on different xylan-based polysaccharides and most of them showed temperature-vs-activity profiles with maxima around 55–65°C. HPAEC-PAD analysis of the hydrolysates of wheat arabinoxylan and of various purified xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) was used to investigate their substrate and product specificities: among the GH10 xylanases, XynB showed a different product pattern when hydrolysing AXOS compared to XynA, XynC, and XynD. None of the GH11 xylanases was able to degrade any of the tested AXOS. All three arabinofuranosidases, ArfA, ArfB and ArfC, were classified as type AXH-m,d enzymes. None of the arabinofuranosidases was able to degrade the double-arabinosylated xylooligosaccharides XA2+3XX. β-Xylosidase XylA (GH43) was able to degrade unsubstituted XOS, but showed limited activity to degrade AXOS.

Hide Abstract
Publication
HPAEC-PAD for oligosaccharide analysis—novel insights into analyte sensitivity and response stability.

Mechelke, M., Herlet, J., Benz, J. P., Schwarz, W. H., Zverlov, V. V., Liebl, W. & Kornberger, P. (2017). Analytical and Bioanalytical Chemistry, 1-13.

The rising importance of accurately detecting oligosaccharides in biomass hydrolyzates or as ingredients in food, such as in beverages and infant milk products, demands for the availability of tools to sensitively analyze the broad range of available oligosaccharides. Over the last decades, HPAEC-PAD has been developed into one of the major technologies for this task and represents a popular alternative to state-of-the-art LC-MS oligosaccharide analysis. This work presents the first comprehensive study which gives an overview of the separation of 38 analytes as well as enzymatic hydrolyzates of six different polysaccharides focusing on oligosaccharides. The high sensitivity of the PAD comes at cost of its stability due to recession of the gold electrode. By an in-depth analysis of the sensitivity drop over time for 35 analytes, including xylo- (XOS), arabinoxylo- (AXOS), laminari- (LOS), manno- (MOS), glucomanno- (GMOS), and cellooligosaccharides (COS), we developed an analyte-specific one-phase decay model for this effect over time. Using this model resulted in significantly improved data normalization when using an internal standard. Our results thereby allow a quantification approach which takes the inevitable and analyte-specific PAD response drop into account.

Hide Abstract
Publication
Simultaneous production of endo-β-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus.

Puchart, V & Biely, P. (2008). Journal of Biotechnology. 137(1-4), 34–43.

When grown on beech-wood glucuronoxylan, two strains of the thermophilic fungus Thermomyces lanuginosius, IMI 84400 and IMI 96213, secreted endo-β-1,4-xylanase of glycoside hydrolase family 11 and simultaneously accumulated an acidic pentasaccharide in the medium. The aldopentaouronic acid was purified and its structure was established by a combination of NMR spectroscopy and enzyme digestion with glycosidases as MeGlcA3Xyl4. Both strains showed limited growth on wheat arabinoxylan as a carbon source. An essential part of the polysaccharide was not utilized, and it was converted to a series of arabinoxylooligosaccharides differing in the degree of polymerization. The structure of the shorter arabinoxylooligosaccharides remaining in the wheat arabinoxylan-spent medium was established using mass spectrometry and digestion with glycosidases. Xylose and linear β-1,4-xylooligosaccharides generated extracellularly during growth on either hardwood or cereal xylan were efficiently taken up by the cells and metabolized intracellularly. The data suggest that due to a lack of extracellular β-xylosidase, α-glucuronidase, and α-L-arabinofuranosidase, the widely used T. lanuginosus strains might become efficient producers of branched xylooligosaccharides from both types of xylans.

Hide Abstract
Publication
Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches.

Pastell, H., Tuomainen, P., Virkki, L. & Tenkanen, M. (2008). Carbohydrate Research, 343(18), 3049-3057.

Shearzyme (GH10 endo-1,4-β-D-xylanase) and two different α-L-arabinofuranosidases (AXH-m and AXH-d3) were used stepwise to manufacture arabinoxylo-oligosaccharides (AXOS) with α-L-Araf (1→2)-monosubstituted β-D-Xylp residues or α-L-Araf (1→2)- and (1→3) doubly substituted β-D-Xylp residues from wheat arabinoxylan (AX) in a rather straightforward way. Four major AXOS (d-I, d-II, m-I and m-II) were formed in two separate hydrolyses. The AXOS were purified and the structures were confirmed using TLC, HPAEC-PAD, MALDI-TOF-MS and 1D and 2D NMR spectroscopy. The samples were identified as d-I: α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-β-D-Xylp-(1→4)-β-D-Xylp-(1→4)-D-Xylp, d-II: α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-β-D-Xylp-(1→4)-D-Xylp, m-I: α-L-Araf-(1→2)-β-D-Xylp-(1→4)-β-D-Xylp-(1→4)-D-Xylp and m-II: α-L-Araf-(1→2)-β-D-Xylp-(1→4)-D-Xylp. To our knowledge, this is the first report on structural 1H and 13C NMR analysis of xylobiose-derived AXOS d-II and m-II. The latter compound has not been reported previously. The doubly substituted AXOS were produced for the first time in good yields, as d-I and d-II corresponded to 11.8 and 5.6 wt% of AX, respectively. Singly α-L-Araf (1→2)-substituted AXOS could also be prepared in similar yields by treating the doubly substituted AXOS further with AXH-d3.

Hide Abstract
Publication
Fermentation of Plant Cell Wall Derived Polysaccharides and Their Corresponding Oligosaccharides by Intestinal Bacteria.

Van Laere, K. M. J., Hartemink, R., Bosveld, M., Schols, H. A. & Voragen, A. G. J. (2000). Journal of Agricultural and Food Chemistry, 48(5), 1644–1652.

New types of nondigestible oligosaccharides were produced from plant cell wall polysaccharides, and the fermentation of these oligosaccharides and their parental polysaccharides by relevant individual intestinal species of bacteria was studied. Oligosaccharides were produced from soy arabinogalactan, sugar beet arabinan, wheat flour arabinoxylan, polygalacturonan, and rhamnogalacturonan fraction from apple. All of the tested substrates were fermented to some extent by one or more of the individual species of bacteria tested. Bacteroides spp. are able to utilize plant cell wall derived oligosaccharides besides their reported activity toward plant polysaccharides. Bifidobacterium spp. are also able to utilize the rather complex plant cell wall derived oligosaccharides in addition to the bifidogenic fructooligosaccharides. Clostridium spp., Klebsiella spp., and Escherichia coli fermented some of the selected substrates in vitro. These studies do not allow prediction of the fermentation in vivo but give valuable information on the fermentative capability of the tested intestinal strains.

Hide Abstract
Publication
Characterisation by 1H NMR spectroscopy of oligosaccharides derived from alkali-extractable wheat-flour arabinoxylan by digestion with endo-(1→4)-β-D-xylanase III from Aspergillus awamori.

Kormelink, F. J. M., Hoffmann, R. A., Gruppen, H., Voragen, A. G. J., Kamerling, J. P. & Vliegenthart, J. F. G. (1993). Carbohydrate Research, 249(2), 369-382.

Alkali-extractable wheat-flour arabinoxylan, treated with endo-(1→4)-β-D-xylanase III from Aspergillus awamori CMI 142717, was fractionated by Bio-Gel P-2 size exclusion chromatography at 60°C. Column fractions, corresponding to oligosaccharides with degrees of polymerisation from 5 to 10, were collected, and subfractionated by high performance anion-exchange chromatography on CarboPac PA-1. The structures of the oligosaccharides thus obtained were elucidated by 1H NMR spectroscopy, showing chains of (1→4)-linked β-D-xylopyranosyl residues differently substituted at O-3 and / or O-2,3 with α-L-arabinofuranosyl groups. The structures were different from those obtained with endo-(1→4)-β-D-xylanase I of the same xylanolytic enzyme system.

Hide Abstract
Publication
Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat....

Hoffmann, R. A., Leeflang, B. R., de Barse, M. M., Kamerling, J. P. & Vliegenthart, J. F. (1991). Carbohydrate Research, 221, 63-81.

Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements ----4)[alpha-L-Araf-(1----3)]-beta-D-Xylp-(1---- or ----4)[alpha- L-Araf-(1----2)][alpha-L-Araf-(1----3)]-beta-D-Xylp-(1----. The structure of penta- to hepta-saccharides, generated by digestion of purified wheat-endosperm arabinoxylan with endo-(1----4)-beta-D-xylanase and isolated by gel-permeation chromatography on Bio-Gel P-6 followed by high-performance anion-exchange chromatography with pulsed amperometric detection, was established using monosaccharide and methylation analysis, f.a.b.-m.s., and 1H-n.m.r. spectroscopy. The oligosaccharides had a core of (1----4)-linked beta-D-xylopyranosyl residues 3- or 2,3-substituted with single alpha-L-arabinofuranosyl groups, and gave 1H-n.m.r. spectra typical for each type.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed