400 Units on WAX at 40oC
Prices exclude VAT
Available for shipping
Content: | 400 Units on WAX at 40oC |
Shipping Temperature: | Ambient |
Storage Temperature: | 2-8oC |
Formulation: | In 3.2 M ammonium sulphate |
Physical Form: | Suspension |
Stability: | Minimum 1 year at 4oC. Check vial for details. |
Enzyme Activity: | α-Arabinofuranosidase |
EC Number: | 3.2.1.55 |
CAZy Family: | GH62 |
CAS Number: | 9067-74-7 |
Synonyms: | non-reducing end alpha-L-arabinofuranosidase; alpha-L-arabinofuranoside non-reducing end alpha-L-arabinofuranosidase |
Source: | Ustilago maydis |
Molecular Weight: | 35,000 |
Concentration: | Supplied at ~ 200 U/mL |
Expression: | Recombinant from Ustilago maydis |
Specificity: | Hydrolysis of terminal, non-reducing α-L-arabinofuranose from singly substituted xylose residues in arabinoxylan (α-1,2 > α-1,3). Does not hydrolyse α-L-arabinofuranose from doubly substituted xylose residues in arabinoxylan. |
Specific Activity: | ~ 9 U/mg protein (40oC, pH 5.0 on wheat arabinoxylan) |
Unit Definition: | One Unit of α-L-arabinfuranosidase activity is defined as the amount of enzyme required to release one µmole of arabinose per minute from wheat arabinoxylan (10 mg/mL) in sodium acetate buffer (100 mM), pH 5.0 at 40oC. |
Temperature Optima: | 40oC |
pH Optima: | 5 |
Application examples: | For use in plant cell wall carbohydrate and biofuels research. |
High purity α-L-Arabinofuranosidase (Ustilago maydis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Highly active on wheat arabonoxylan.
We offer related Carbohydrate Active enZYmes.
(Bacteroides ovatus) E-ABFBO21 - α-L-Arabinofuranosidase B21
(Bacteroides ovatus) E-ABFBO25 - α-L-Arabinofuranosidase B25
(Bacteroides ovatus) E-AFASE - α-L-Arabinofuranosidase (Aspergillus niger) E-AFAM2 - α-L-Arabinofuranosidase
(Bifidobacterium adolescentis) E-ABFCJ - α-L-Arabinofuranosidase (Cellvibrio japonicus) E-ABFCT - α-L-Arabinofuranosidase
(Clostridium thermocellum)
(Trichoderma longibrachiatum) E-XYLAA - endo-1,4-β-Xylanase (Aspergillus aculeatus) E-XYAN4 - endo-1,4-β-Xylanase M4 (Aspergillus niger) E-XYRU6 - endo-1,4-β-Xylanase (rumen microorganism) E-XYNAP - endo-1,4-β-Xylanase (Aeromonas punctata) E-XYNBS - endo-1,4-β-Xylanase
(Bacillus stearothermophilus T6) E-XYNBCM - endo-1,4-β-Xylanase (Cellvibrio mixtus) E-XYLNP - endo-1,4-β-Xylanase (Neocallimastix patriciarum) E-XYLATM - endo-1,4-β-Xylanase (Thermotoga maritima) E-XYNACJ - endo-1,4-β-Xylanase (Cellvibrio japonicus)
McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.
A range of α-L-arabinofuranosyl-(1-4)-β-D-xylo-oligosaccharides (AXOS) were produced by hydrolysis of wheat flour arabinoxylan (WAX) and acid debranched arabinoxylan (ADWAX), in the presence and absence of an AXH-d3 α-L-arabinofuranosidase, by several GH10 and GH11 β-xylanases. The structures of the oligosaccharides were characterised by GC-MS and NMR and by hydrolysis by a range of α-L-arabinofuranosidases and β-xylosidase. The AXOS were purified and used to characterise the action patterns of the specific α-L-arabinofuranosidases. These enzymes, in combination with either Cellvibrio mixtus or Neocallimastix patriciarum β -xylanase, were used to produce elevated levels of specific AXOS on hydrolysis of WAX, such as 32-α-L-Araf-(1-4)-β-D-xylobiose (A3X), 23-α-L-Araf-(1-4)-β-D-xylotriose (A2XX), 33-α-L-Araf-(1-4)-β-D-xylotriose (A3XX), 22-α-L-Araf-(1-4)-β-D-xylotriose (XA2X), 32-α-L-Araf (1-4)-β-D-xylotriose (XA3X), 23-α-L-Araf-(1-4)-β-D-xylotetraose (XA2XX), 33-α-L-Araf-(1-4)-β-D-xylotetraose (XA3XX), 23 ,33-di-α-L-Araf-(1-4)-β-D-xylotriose (A2+3XX), 23,33-di-α-L-Araf-(1-4)-β-D-xylotetraose (XA2+3XX), 24,34-di-α-L-Araf-(1-4)-β-D-xylopentaose (XA2+3XXX) and 33,34-di-α-L-Araf-(1-4)-β-D-xylopentaose (XA3A3XX), many of which have not previously been produced in sufficient quantities to allow their use as substrates in further enzymic studies. For A2,3XX, yields of approximately 16% of the starting material (wheat arabinoxylan) have been achieved. Mixtures of the α-L-arabinofuranosidases, with specific action on AXOS, have been combined with β-xylosidase and β-xylanase to obtain an optimal mixture for hydrolysis of arabinoxylan to L-arabinose and D-xylose.
Hide Abstract