D-Fructose/D-Glucose Assay Kit

Play Training Video

00:08  Introduction
01:05   Principle
02:29   Reagent Preparation
03:06   Procedure
06:41    Calculations

D-Fructose D-Glucose Assay Kit K-FRUGL Scheme
   
Reference code: K-FRUGL
SKU: 700004287

110 assays (manual) / 1100 assays (microplate) / 1100 assays (auto-analyser)

Content: 110 assays (manual) / 1100 assays (microplate) / 1100 assays (auto-analyser)
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: D-Fructose, D-Glucose
Assay Format: Spectrophotometer, Microplate, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 340
Signal Response: Increase
Linear Range: 4 to 80 µg of D-glucose, D-fructose or sucrose per assay
Limit of Detection: 0.66 mg/L
Reaction Time (min): ~ 13 min
Application examples: Wine, beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, bread, bakery products, candies, desserts, confectionery, ice-cream, fruit and vegetables, condiments, tobacco, cosmetics, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.).
Method recognition: Methods based on this principle have been accepted by AOAC Method 985.09, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN, MEBAK and IOCCC

D-Fructose/D-Glucose test kit, an enzymatic UV-method for the measurement and analysis of D-fructose and/or D-glucose in plant and food products.

Note for Content: The number of manual tests per kit can be doubled if all volumes are halved.  This can be readily accommodated using the MegaQuantTM  Wave Spectrophotometer (D-MQWAVE).

See more of our monosaccharide assay kits.

Scheme-K-FRUGL FRUGL Megazyme

Advantages
  • Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.
  • PVP incorporated to prevent tannin inhibition 
  • Validated by the University of Wine, Suze la Rousse, France 
  • Very competitive price (cost per test) 
  • All reagents stable for > 2 years after preparation (manual analysis applications) 
  • Rapid reaction at either 25 or 37o
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included
  • Suitable for manual, microplate and auto-analyser formats
Validation of Methods
Documents
Certificate of Analysis
Safety Data Sheet
FAQs Assay Protocol Data Calculator Product Performance Validation Report
Publications
Megazyme publication

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Many of the enzymatic test kits are official methods of prestigious organisations such as the Association of Official Analytical Chemicals (AOAC) and the American Association of Cereal Chemists (AACC) in response to the interest from oenologists. Megazyme decided to use its long history of enzymatic bio-analysis to make a significant contribution to the wine industry, by the development of a range of advanced enzymatic test kits. This task has now been successfully completed through the strategic and comprehensive process of identifying limitations of existing enzymatic bio-analysis test kits where they occurred, and then using advanced techniques, such as molecular biology (photo 1), to rapidly overcome them. Novel test kits have also been developed for analytes of emerging interest to the oenologist, such as yeast available nitrogen (YAN; see pages 2-3 of issue 117 article), or where previously enzymes were simply either not available, or were too expensive to employ, such as for D-mannitol analysis.

Hide Abstract
Megazyme publication

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

It is without doubt that testing plays a pivotal role throughout the whole of the vinification process. To produce the best possible quality wine and to minimise process problems such as “stuck” fermentation or troublesome infections, it is now recognised that if possible testing should begin prior to harvesting of the grapes and continue through to bottling. Traditional methods of wine analysis are often expensive, time consuming, require either elaborate equipment or specialist expertise and frequently lack accuracy. However, enzymatic bio-analysis enables the accurate measurement of the vast majority of analytes of interest to the wine maker, using just one piece of apparatus, the spectrophotometer (see previous issue No. 116 for a detailed technical review). Grape juice and wine are amenable to enzymatic testing as being liquids they are homogenous, easy to manipulate, and can generally be analysed without any sample preparation.

Hide Abstract
Publication

Milk production and methane emissions from dairy cows fed silages from different grassland species and harvesting frequencies.

Weiby, K. V., Årvik, L., Eknæs, M., Schwarm, A., Steinshamn, H., Beauchemin, K. A., Lund, P., SChei, I. & Schei, I. (2024). Journal of Dairy Science.

The aim of this study was to examine how silages from different grassland species and harvesting frequencies affect feed intake, milk production, and methane (CH4) emission in dairy cows. We hypothesized that cows consuming silages of more frequent harvest, grass species with greater organic matter digestibility and legumes with lower NDFom concentration would have greater silage dry matter intake and milk yield and thereby lower CH4 yield and intensity. Forty Norwegian Red cows were allocated to 5 treatments in a cyclic changeover design with 4 21-d periods (14 d of adaptation, 7 d of data collection). The 5 treatments evaluated were silages produced from timothy (Phleum pratense L.) in a 3-cut system (T3), timothy in a 2-cut system (T2), perennial ryegrass (Lolium perenne L.) in a 3-cut system (PR3), red clover (Trifolium pratense L.) in a 3-cut system (RC3) and a mix of T3 and RC3 (50:50 on DM basis) (T3/RC3). The treatments were prepared by mixing silages from each crop over the growing season, proportional to the harvested DM yield of each cut. Cows were offered the mixed silages ad libitum supplemented with a fixed level of concentrate. Gas emissions were measured using 2 Greenfeed units. Milk yield was recorded in the milking robot at each visit, and milk samples were collected at 3 consecutive milkings during the last 7 d of each period. Cows were weighed after each milking, and total-tract digestibility of each diet was estimated using acid insoluble ash as internal marker in fecal grab samples. The data were analyzed using the MIXED procedure of SAS with block, period and treatment as fixed effects and animal within block as random effect. Silage and total DMI did not differ between T3 and T2, but total DMI was lower for PR3 than for T3. There was a quadratic effect of increased proportion of red clover, with highest intakes of T3/RC3 and lower intakes of RC3 than of T3. Energy corrected milk (ECM) yield was lower for T2 than T3, and for PR3 than T3. There was a quadratic effect of increased proportion of red clover, with highest ECM yield in T3/RC3 and lower in RC3 than in T3. Organic matter digestibility was lower for T2 than T3, but it did not differ between T3 and PR3. Including red clover in the diet linearly decreased organic matter digestibility. Methane production (g/d) did not differ between T3 and T2, but CH4 intensity (g/kg ECM) was greater for T2 than for T3. There was no difference between T3 and PR3 for CH4 production but yield and intensity were greater for PR3 than T3. Including red clover in the diet linearly increased CH4 production, yield and intensity with greatest intensity in the 100% red clover diet. In conclusion, changing harvesting frequency for timothy from 2 to 3 harvests per year did not affect CH4 production or yield, but CH4 intensity was reduced. Replacing timothy with perennial ryegrass and increased inclusion rate of red clover both increased CH4 yield and intensity.

Hide Abstract
Publication

Low gaseous ozone doses as an elicitor for health-promoting compounds in Andean blackberries (Rubus glaucus Benth).

Horvitz, S., Urbano, M., Arroqui, C. & Vírseda, P. (2024). Scientia Horticulturae, 336, 113439.

Andean blackberries are appreciated for their unique flavor, high nutritional quality, and antioxidant properties. In this study, the effectiveness of low doses (0.4; 0.5; 0.6 and 0.7 µL l-1 for 3 min) of gaseous ozone as an elicitor for health-promoting compounds was evaluated during 10 d of storage at 6 ± 1°C. The physicochemical and sensory quality of the fruit was also determined. Ozone was used in a single application before storage. Initially, regardless of the dose applied, no negative effects of the O3 treatments were observed in any of the parameters studied. In addition, the firmness, the antioxidant activity and the fructose, vitamin C and polyphenols contents were higher in the O3-treated fruit compared to the control. During storage, these differences were maintained except for the 0.7 µL L-1 dose. This indicates that low concentrations of gaseous O3 could promote the synthesis of biocompounds and be effective in maintaining the postharvest quality of blackberries for at least 4 days of refrigerated storage. However, more research is needed to maintain these advantages during longer storage periods.

Hide Abstract
Publication

Volatile Fingerprints of Synthetic Wines Fermented by Different Oenological Yeast Strains.

Pati, S., Benucci, I., Rosiello, G. & Esti, M. (2024). Beverages, 10(4), 122.

Background: The role of the S. cerevisiae strain in defining the volatile fingerprint is expressed throughout alcoholic fermentation and post-fermentation sur lie aging and is crucial for customizing the wine style. Methods: In this study, the alcoholic fermentation was carried out in a synthetic must to exclusively bring out the performance of the yeast in terms of volatile compound production, excluding the effect of the grape. Results: Among the 33 volatile organic compounds identified in the synthetic wines by GC-MS, esters, alcohols, and acids, represented the major groups for the nine different commercial oenological strains tested. All the relevant differences in the volatile fingerprint of the synthetic wines, which were lab-scale fermented, were quantitative rather than qualitative. The clustergram representation of the volatiles revealed an outstanding fingerprint for two strains (VIN13 and VIN7) among those tested, featuring hexanoic acid, octanoic acid, the corresponding esters (ethyl hexanoate, ethyl octanoate), and the acetates (2-phenylethyl acetate, isoamyl acetate), all at the highest levels. No relationship was appreciated between the fermentation rate and the volatile fingerprints. Conclusions: The outcomes of this study address the wine industry’s needs, supplying a full characterization of a broad range of commercial yeasts’ ability in fermentative volatile production.

Hide Abstract
Publication

Impact of Botrytis cinerea on γ-Nonalactone concentration: analysis of New Zealand white wines using SIDA-SPE-GC-MS.

Miller, G., Barker, D., Pilkington, L. & Deed, R. (2024). Oeno One, 58(4).

Noble rot, caused by infection of grapes with the fungus Botrytis cinerea, is commonly used in the production of dessert-style white wines, imparting desirable aroma descriptors, including dried fruit, honey, and stone fruit. γ-Nonalactone is an aroma compound that is ubiquitous in wine yet has been overlooked in literature for some time. Previously, this compound has been found in higher concentrations in noble rot wines. New Zealand (NZ) is world-renowned for its high-quality white wines, particularly Sauvignon blanc; however, limited research has been carried out on the aroma features of wines produced in lower volumes, such as botrytised dessert styles, and those produced from aromatic grape varieties such as Riesling. Therefore, this work quantified γ-Nonalactone concentrations in 38 NZ commercial white wines, representing botrytised (18) and non-botrytised (20) styles, using SIDA-SPE-GC-MS. These wines were selected to represent a cross-section of NZ white wines, made from Sauvignon blanc, Riesling, and Sauvignon-Sémillon blends, and derived across a range of vintages (2014–2021), and NZ wine regions (Central Otago, Gisborne, Hawke’s Bay, Marlborough, Waiheke Island, Waipara Valley, and Wairarapa). Multivariate data analyses were carried out using vitivinicultural data from wine producers, wine, and measured technical parameters and γ-Nonalactone concentrations. Analyses revealed that γ-Nonalactone concentration was significantly higher in botrytised wines (p-value = 3 × 10-8), with a maximum of 43.5 µg L-1, compared to a maximum of 8.7 µg L-1 in the non-botrytised samples. No significant associations were found between γ-Nonalactone concentration and region or grape variety, suggesting that the precursors to γ-Nonalactone are produced by B. cinerea itself, or through alterations in grape metabolism induced by B. cinerea. Additional research is needed to elucidate the mechanism(s) by which noble rot leads to higher γ-Nonalactone concentrations in wines.

Hide Abstract
Publication

Reducing the acrylamide concentration in homemade bread processed with L-asparaginase.

Calabrese, M., De Luca, L., Basile, G., Sorrentino, G., Esposito, M., Pizzolongo, F., Verde, G. & Romano, R. (2024). LWT, 209, 116770.

Acrylamide is the main contaminant for starchy foods cooked at temperatures above 120 °C. It represents a potential carcinogen, and consequently, its reduction is important for safeguarding global health. The L-asparaginase enzyme catalyses the hydrolytic cleavage of L-asparagine, a precursor of acrylamide, into L-aspartic acid and ammonia, thus reducing the formation of acrylamide. The objective of this work was to test the enzyme L-asparaginase at two concentrations (150 and 300 U/kg flour) under normal baking conditions to reduce acrylamide. The results showed that the use of 300 U/g of the enzyme led to a reduction of 78% in acrylamide, meeting the reference level reported by Reg. (EU) 2017/2158 (50 μg/kg) without influencing parameters such as colour that impact the final characteristics of the product.

Hide Abstract
Publication

Pulsed electric field effect on acrylamide reduction and quality attributes of continuous-style Lamoka potato chips.

Santiago-Mora, P., Skinner, M., Hendricks, A., Rimkus, T., Meyer, B., Gratzek, J., Pu, S., Woodbury, L., Bond, L., McDougal, O. & McDougal, O. (2024). Heliyon, 10(11).

Potato chips are a popular snack, well-liked because of their texture-flavor combination. Potato chips are made by frying slices of potato in vegetable oil to achieve a crispy texture. Frying potato slices initiates the Maillard reaction, resulting in chemical changes that enhance taste, color, and texture, but also undesired acrylamides, which are suspected carcinogens. The application of pulsed electric field (PEF) technology is commonly used in French fry processing operations to prolong cutting blade sharpness and reduce waste, energy consumption, and water usage. Despite these attributes, PEF systems have not yet gained widespread adoption by potato chip producers. In the current study, Lamoka potatoes were PEF-treated prior to continuous frying into potato chips. The effect of specific energy at 0.75 kJ/kg (Low-PEF) and 1.5 kJ/kg (High-PEF) and electric field strength of 1 kV/cm, frequency of 24 kV, and pulse width of 6 μs versus untreated (control) samples was studied, then batches of 250 g of slices were fried at 170°C or 185°C for two frying times to obtain potato chips with acrylamide levels below the California Proposition 65 limit (275 ng/g). The Lamoka potato chip product quality metrics that were assessed include moisture, fat, reducing sugars, asparagine, acrylamide, chip color, and texture. PEF treatment of Lamoka potatoes resulted in chips fried in 10% less time, lower oil content by 8%, and a decrease of reducing sugars by 19.2 %, asparagine by 42.0%, and acrylamide by 28.9%. The PEF fried chips were lighter in color but maintained textural attributes compared to continuous frying cooking. The process of frying potato slices at 170°C for 150s with High-PEF yielded potato chips with acrylamide content below the California Proposition 65 limit; which speaks to the health implications for consumers and the quality and safety of these chips.

Hide Abstract
Publication

Evaluation of the Biological Activity of Manna Exudate, from Fraxinus ornus L., and Its Potential Use as Hydrogel Formulation in Dermatology and Cosmetology.

Villa, C., Cuna, F. S. R. D., Grignani, E., Perteghella, S., Panzeri, D., Caviglia, D. & Russo, E. (2024). Gels, 10(6), 351.

Manna, a well-known herbal drug has multiple traditional and pharmaceutical uses and the entire composition, sugar derivatives and polyphenols, gives rise to a very interesting bioactive complex with versatile therapeutic and benefic properties such as antioxidant and anti-inflammatory activities. The aim of this research was to investigate a F. ornus manna extract loaded in a pectin hydrogel as a synergic vehicle to evaluate the potential use of the complex for cosmetic and dermatological applications. In particular, the study set out to disclose manna properties as a wound healing agent with antimicrobial and reparative activity on infected tissues. Moreover, considering the correlation between antioxidant activity and antiaging potential, the extract was investigated in regard to the anti-elastase activity and skin whitening potential. The total phenolic content of each extract was also determined and a safe profile by in vitro cytotoxicity studies was verified. The hydrogel complex, containing the manna extract and pectin as the gelling agent, exhibited suitable properties in terms of pH (from 5.50 to 6.80), rheological behavior and ability of preserving the antioxidant activity of the manna exudate (around 10%). All the peculiarities that make the pectin hydrogels ideal systems for skin disease, as wound dressings and for antiaging cosmetic formulations.

Hide Abstract
Publication

Insights into the relative contribution of four precursors to 3-sulfanylhexan-1-ol and 3-sulfanylhexylacetate biogenesis during fermentation.

Muhl, J. R., Pilkington, L. I., Fedrizzi, B. & Deed, R. C. (2024). Food Chemistry, 449, 139193.

The desirable wine aroma compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) are released during fermentation from non-volatile precursors present in the grapes. This work explores the relative contribution of four precursors (E-2-hexenal, 3-S-glutathionylhexan-1-ol, 3-S-glutathionylhexanal, and 3-S-cysteinylhexan-1-ol) to 3SH and 3SHA. Through the use of isotopically labelled analogues of these precursors in defined fermentation media, new insights into the role of each precursor have been identified. E-2-Hexenal was shown to contribute negligible amounts of thiols, while 3-S-glutathionylhexan-1-ol was the main precursor of both 3SH and 3SHA. The glutathionylated precursors were both converted to 3SHA more efficiently than 3-S-cysteinylhexan-1-ol. Interestingly, 3-S-glutathionylhexanal generated 3SHA without detectable concentrations of 3SH, suggesting possible differences in the way this precursor is metabolised compared to 3-S-glutathionylhexan-1-ol and 3-S-cysteinylhexan-1-ol. We also provide the first evidence for chemical conversion of 3-S-glutathionylhexan-1-ol to 3-S-(γ-glutamylcysteinyl)-hexan-1-ol in an oenological system.

Hide Abstract
Publication

Far-red light modulates grapevine growth by increasing leaf photosynthesis efficiency and triggering organ-specific transcriptome remodelling.

Kong, J., Zhao, Y., Fan, P., Wang, Y., Xu, X., Wang, L., Li, S., Duan, W., Liang, Z. & Dai, Z. (2024). BMC Plant Biology, 24(1), 189.

Background: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. Results: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. Conclusions: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).

Hide Abstract
Publication

Influence of Post-Harvest 1-Methylcyclopropene (1-MCP) Treatment and Refrigeration on Chemical Composition, Phenolic Profile and Antioxidant Modifications during Storage of Abate Fétel Pears.

Tedeschi, P., Marzocchi, S., Marchetti, N., Barba, F. J. & Maietti, A. (2023). Antioxidants, 12(11), 1955.

‘Abate Fétel’, a winter cultivar, is the most important pear cultivar in Italy; its fruits are appreciated by consumers for their aroma, texture and balanced sweet and sour taste. Maintaining high-quality characteristics to prolong the shelf-life of fruit and preserve the sensory and nutritional quality is a priority for the food industry. The aim of our study was to test the effectiveness of 1-methylcyclopropene (1-MCP) and cold storage in prolonging the shelf-life of these fruits, which were harvested at maturity at two different times. This work focused on the effects of different storage treatments and two ripening times on (i) the chemical composition of Abate Fétel pulp fruits to preserve their sweet taste and aroma and (ii) the phenolic profile composition and antioxidant activity of the peel, which is naturally rich in phytochemicals and important for the fruit’s shelf-life and in the functional food industry for its high nutritional value. Abate Fétel fruits were harvested at the optimal commercial maturity stage, first on 15 September, having been treated with 1-MCP and stored for 2 months at cold temperatures; the other fruits were harvested at the end of September and stored in a cold cell for 2 months. The fruit pulp was tested for glucose and fructose, pH, acidity and organic acids (malic, citric, fumaric and shikimic), phenolic content and phenolic compounds (chlorogenic and caffeic acids, rutin, hyperoside, kaempferol-3-rutinoside and isoquercitrin), and the antioxidant activities in the fruit peels were measured. Treating the fruits with 1-MCP better preserved the phytochemical compounds compared to simple refrigeration, preserving the fruit’s quality and prolonging its shelf-life. All the treatments help to maintain the glucose and fructose content and the acidity, preserving the aroma and organoleptic characteristics.

Hide Abstract
Publication

Impact of Steam Extraction and Maceration Duration on Wines from Frozen ‘Frontenac’Must.

Svyantek, A., Wang, Z. & Hatterman-Valenti, H. (2023). Fermentation, 9(4), 317.

The enology industry in North Dakota is extremely young, with less than twenty years of existence. At times throughout the development of the North Dakota viticulture and enology industries, commercial wine producers have elected to purchase or store fresh harvested grapes as frozen musts. To investigate the fermentation outcomes related to skin contact for red grapevine musts, a postfreeze fermentation experiment was conducted with fruit from ‘Frontenac’, one of the most widely grown red grapevines in the Upper Midwest U.S. and North Dakota. Four fermentation treatments were applied to frozen ‘Frontenac’ grapevine musts: steam juice extraction, rosé, 1 day after inoculation (DAI) skin contact, and 9 DAI skin contact. Samples were collected daily for ten days and analyzed for fermentation progress and spectrophotometric monitoring of wine color attributes and total phenolics. The final wines were analyzed two years after bottling. Steam-extracted musts were initially darkest; however, they were lighter as final wines than the 9 DAI wines and similar to rosé wines in lightness. Total phenolics were greatest for 9 DAI wines and total red pigments were lowest for steam-extracted wines. While differences between treatments were detected, the wines remained visually similar; this indicates that color extraction within the freeze–thaw processes of musts may obliterate subtly and make it difficult to produce wines of light color when stored under these conditions. Continued work with additional grapevines beyond ‘Frontenac’ may help fine-tune must and fermentation extraction procedures for small-scale wineries growing cold-hardy grapevines.

Hide Abstract
Publication

Agaricus bisporus chitosan influences the concentrations of caftaric acid and furan-derived compounds in Pinot noir juice and base wine.

Mederios, J., Xu, S., Pickering, G. & Kemp, B. (2023). Oeno One, 57(3), 255-268.

Chitosan is a fining agent used in winemaking, although its use in juice and wine beyond fining has been limited until now. Therefore, this study's first aim was to determine if chitosan derived from Agaricus bisporus (button mushrooms) could reduce caffeic and caftaric acid concentrations in Pinot noir grape juice (Study A). The second aim was to determine if chitosan, when added to base wine, could influence the synthesis of furan-derived compounds during storage (Study B). In Study A, Pinot noir grape juice was stored at 10°C for 18 hours after the following treatments: control (no addition), bentonite/activated charcoal (BAC), low molecular weight (< 3 kDa; LMW) chitosan, med. MW (250 kDa; MMW) chitosan, and high MW (422 kDa; HMW) chitosan (all 1 g/L additions). Caftaric acid was decreased, and total amino acid concentration was increased in the LMW chitosan-treated juice, while the estimated total hydroxycinnamic acid content, turbidity, and browning were decreased in the MMW chitosan-treated juice compared to the control. In Study B, Pinot noir base wine destined for sparkling wine was stored at 15 and 30°C for 90 days with the following treatments: control (no addition), LMW chitosan, MMW chitosan, and HMW chitosan (all 1 g/L additions). The three chitosan treatments stored at 30°C had increased furfural, homofuraneol, and 5-methylfurfural formation in the base wine compared to the control. At 15°C, furfural and homofuraneol had greater concentrations in all chitosan-treated wines after 90 days of storage. Our results demonstrate the potential of mushroom-derived chitosan to remove caftaric acid from grape juice and suggest that chitosan can influence the synthesis of furan-derived compounds in wine after short-term storage.

Hide Abstract
Publication

Reintroducing Autochthonous Minor Grapevine Varieties to Improve Wine Quality and Viticulture Sustainability in a Climate Change Scenario.

Frioni, T., Romanini, E., Pagani, S., Del Zozzo, F., Lambri, M., Vercesi, A., Gatti, M., Poni, S. & Gabrielli, M. (2023). Australian Journal of Grape and Wine Research2023.

One of the major challenges that global warming poses to viticulture is the maintenance of adequate acidity at maturity in white grapes for sparkling winemaking. This issue arises from three main occurrences: (i) with higher temperatures, degradation of malic acid is significantly enhanced; (ii) with a general advancement in grapevine phenology, grape maturity may occur under suboptimal climatic conditions; and (iii) harvesting grapes at “traditional” dates results in overripe fruits for sparkling destinations. In this biennial work, we compared the fruit and must composition of a local, widely grown white grape variety in the Colli Piacentini area (cv. Ortrugo, ORT) with those of a minor autochthonous variety, namely, Barbesino (BRB). Furthermore, we compared the composition, aromatic, and sensory profiles of wines obtained from ORT and BRB grapes picked on the same date and, in addition, of a second Barbesino wine from late harvest (BRB-LH). ORT and BRB had a similar sugar accumulation dynamic, whereas BRB exhibited a delayed loss of titratable acidity. In more details, BRB had lower malic acid degradation rates when malate concentration was <9 g/L. As a result, with comparable yield and total soluble solid content (TSS) (~20°Brix), BRB had a higher berry titratable acidity and malic acid concentration at harvest than ORT. BRB wines showed the highest titratable acidity (TA), while ORT had the lowest TA and a higher pH, and as expected, BRB-LH had the highest pH and a lower TA than BRB although still higher than those of ORT wine. The aroma profiles of wines were mainly characterized by fermentative aromas, including esters, fatty acids, higher alcohols, and C6 compounds, and BRB-LH wines showed the highest concentration of higher alcohols, while the fermentative esters were higher in ORT wines. Panelists considered BRB significantly fresher and with bigger aroma intensity than ORT, confirming that the higher acidity detected in BRB musts is well preserved in final wines. Our work demonstrates that local minor varieties can be reconsidered in light of the new climate change-related issues impairing viticulture sustainability today. In particular, currently neglected cultivars could help preserve must acidity as compared to traditional varieties having early ripening, maintaining the links with terroir and local traditions at the same time.

Hide Abstract
Safety Information
Symbol : GHS05, GHS08
Signal Word : Danger
Hazard Statements : H314, H360
Precautionary Statements : P201, P202, P260, P264, P280
Safety Data Sheet
Customers also viewed
D-Fructose D-Glucose Assay Kit Liquid Ready K-FGLQR FGLQR
D-Fructose/D-Glucose Assay Kit (Liquid Ready™)
D-Glucose Assay Kit Liquid Ready K-GLULQR GLULQR
D-Glucose Assay Kit (Liquid Ready™)
Available Carbohydrates Assay Kit K-AVCHO AVCHO
Available Carbohydrates Assay Kit
MegaQuant Wave Spectrophotometer MegaQuant Wave Starter Pack Chemistry Analyzer D-MQWAVE
MegaQuant™ Wave Spectrophotometer / MegaQuant™ Wave Starter Pack (Chemistry Analyzer)
D-Glucose HK Assay Kit K-GLUHK GLUHK
D-Glucose HK Assay Kit
D-Xylose Assay Kit K-XYLOSE XYLOSE
D-Xylose Assay Kit
Sucrose D-Glucose Assay Kit K-SUCGL SUCGL
Sucrose/D-Glucose Assay Kit
Sucrose D-Fructose D-Glucose Assay Kit K-SUFRG SUFRG
Sucrose/D-Fructose/D-Glucose Assay Kit