The product has been successfully added to your shopping list.

Cellulase Assay Kit (CellG5 Method)

Play Training Video

0:05  Introduction
0:58   Principle
1:51    Reagent Preparation
8:41   Enzyme Extraction
11:22  Procedure
14:14  Calculation

Cellulase Assay Kit CellG5 Method K-CellG5 Schemes
Product code: K-CellG5-2V



60 / 120 assays (manual) / 240 assays (auto-analyser)

Prices exclude VAT

Available for shipping

Content: (K-CellG5-2V)
60 / 120 assays (manual) / 240 assays (auto-analyser) or 

120 / 240 assays (manual) / 480 assays (auto-analyser)
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: endo-Cellulase
Assay Format: Spectrophotometer, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 400
Signal Response: Increase
Limit of Detection: 1.2 x 10-3 U/mL
Reproducibility (%): ~ 3%
Total Assay Time: 10 min
Application examples: Fermentation broths, industrial enzyme preparations and biofuels research.
Method recognition: Novel method

The CellG5 assay reagent for the measurement of endo-cellulase (endo-1,4-β-glucanase) contains two components; 
1) 4,6-O-(3-Ketobutylidene)-4-nitrophenyl-β-D-cellopentaoside (BPNPG5) and 2) thermostable β-glucosidase. The ketone blocking group prevents any hydrolytic action by the β-glucosidase on BPNPG5.  Incubation with an endo-cellulase generates a non-blocked colourimetric oligosaccharide that is rapidly hydrolysed by the ancillary β-glucosidase. The rate of formation of 4-nitrophenol is therefore directly related to the hydrolysis of BPNPG5 by the endo-cellulase. The reaction is terminated and the phenolate colour is developed on addition of Tris buffer solution (pH 9.0).
The CellG5 assay represents a huge step forward in the methodology for the measurement of cellulase that traditionally relied on substrates such as CM-cellulose, Avicel, cellooligosaccharides, filter paper or dyed polysaccharides including CMC Congo red or cellulose azure.

View our complete list of assay kits for enzyme activities.

Scheme-K-CellG5-2V CellG5 Megazyme

  • Very cost effective 
  • All reagents stable for > 4 years 
  • Completely specific for cellulase (endo-1,4-glucanase) 
  • Generally applicable and highly sensitive 
  • Simple format. Well suited to automation 
  • Standard included
Certificate of Analysis
Safety Data Sheet
Booklet Data Calculator Validation Report
Megazyme publication

Prediction of potential malt extract and beer filterability using conventional and novel malt assays.

Cornaggia, C., Evans, D. E., Draga, A., Mangan, D. & McCleary, B. V. (2019). Journal of Institute of Brewing, 125(3), 294-309.

Colourimetric assays were used to measure the activities of six key hydrolases endogenous to barley: β‐glucanase, xylanase, cellulase, α-amylase, beta‐amylase and limit dextrinase. The analysed barley malt samples were previously characterised by 27 conventional malt quality descriptors. Correlations between enzymatic activities and brewing parameters such as extract yield, fermentability, viscosity and filterability were investigated. A single extraction protocol for all six hydrolases was optimised and used for multi‐enzyme analysis using fully automatable assay formats. A regression analysis between malt parameters was undertaken to produce a relationship matrix linking enzyme activities and conventional malt quality descriptors. This regression analysis was used to inform a multi‐linear regression approach to create predictive models for extract yield, apparent attenuation limit, viscosity and filterability using the Small‐scale Wort rapId Filtration Test (SWIFT) and two different mashing protocols – Congress and a modified infusion mash at 65oC (MIM 65oC). It was observed that malt enzyme activities displayed significant correlations with the analysed brewing parameters. Both starch hydrolases and cell wall hydrolase activities together with modification parameters (i.e. Kolbach index) were found to be highly correlated with extract yield and apparent attenuation limit. Interestingly, it was observed that xylanase activity in malts was an important predictor for wort viscosity and filterability. It is envisaged that the automatable measurement of enzyme activity could find use in plant breeding progeny selection and for routine assessment of the functional brewing performance of malt batches. This analytical approach would also contribute to brewing process consistency, product quality and reduced processing times.

Hide Abstract
Megazyme publication
A novel automatable enzyme-coupled colorimetric assay for endo-1,4-β-glucanase (cellulase).

Mangan, D., Cornaggia, C., McKie, V., Kargelis. T. & V. McCleary, B. V. (2016). Analytical and Bioanalytical Chemistry, 408(15), 4159-4168.

endo-1,4-β-Glucanase (endo-cellulase, EC is one of the most widely used enzymes in industry. Despite its importance, improved methods for the rapid, selective, quantitative assay of this enzyme have been slow to emerge. In 2014, a novel enzyme-coupled assay that addressed many of the limitations of the existing assay methodology was reported. This involved the use of a bifunctional substrate chemically derived from cellotriose. Reported herein is a much improved version of this assay employing a novel substrate, namely 4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-D-cellopentaoside.

Hide Abstract
Megazyme publication
Novel substrates for the measurement of endo-1,4-β-glucanase (endo-cellulase).

McCleary, B. V., Mangan, D., Daly, R., Fort, S., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 385, 9-17.

A specific and sensitive substrate for the assay of endo-1,4-β-glucanase (cellulase) has been prepared. The substrate mixture comprises benzylidene end-blocked 2-chloro-4-nitrophenyl-β-cellotrioside (BzCNPG3) in the presence of thermostable β-glucosidase. Hydrolysis by exo-acting enzymes such as β-glucosidase and exo-β-glucanase is prevented by the presence of the benzylidene group on the non-reducing end D-glucosyl residue. On hydrolysis by cellulase, the 2-chloro-4-nitrophenyl-β-glycoside is immediately hydrolysed to 2-chloro-4-nitrophenol and free D-glucose by the β-glucosidase in the substrate mixture. The reaction is terminated and colour developed by the addition of a weak alkaline solution. The assay procedure is simple to use, specific, accurate, robust and readily adapted to automation. This procedure should find widespread applications in biomass enzymology and in the specific assay of endo-1,4-β-glucanase in general.

Hide Abstract
Megazyme publication
Quantitative fluorometric assay for the measurement of endo-1,4-β-glucanase.

Mangan, D., McCleary, B. V., Liadova, A., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 395, 47-51.

There is a growing demand for research tools to aid the scientific community in the search for improved cellulase enzymes for the biofuel industry. In this work, we describe a novel fluorometric assay for cellulase (endo-1,4-β-glucanase) which is based on the use of 4,6-O-benzylidene-4-methylumbelliferyl-β-cellotrioside (BzMUG3) in the presence of an ancillary β-glucosidase. This assay can be used quantitatively over a reasonable linear range, or qualitatively as a solution screening tool which may find extensive use in the area of metagenomics.

Hide Abstract

Rapid Optimisation of Cellulolytic Enzymes Ratios in Saccharomyces Cerevisiae using in Vitro SCRaMbLE.

Kroukamp, H., Wightman, E. L. I., Pretorius, I. S., Paulsen, I. T. & Nevalainen, H. K. M. (2020). Biotechnology for Biofuels, 13(1), 182.

For the economic production of biofuels and other valuable products from lignocellulosic waste material, a consolidated bioprocessing (CBP) organism is required. With efficient fermentation capability and attractive industrial qualities, Saccharomyces cerevisiae is a preferred candidate and has been engineered to produce enzymes that hydrolyze cellulosic biomass. Efficient cellulose hydrolysis requires the synergistic action of several enzymes; with the optimum combined activity ratio dependent on the composition of the substrate. Results In vitro SCRaMbLE generated a library of plasmids containing different ratios of a β-glucosidase gene (CEL3A) from Saccharomycopsis fibuligera and an endoglucanase gene (CEL5A) from Trichoderma reesei . S. cerevisiae , transformed with the plasmid library, displayed a range of individual enzyme activities and synergistic capabilities. Furthermore, we show for the first time that BPNPG5 (Megazyme®) is a suitable substrate to determine synergistic Cel3A and Cel5A action and an accurate predictive model for this synergistic action was devised. Strains with highest BPNPG5 activity had an average CEL3A and CEL5A gene cassette copy number of 1.3 ± 0.6 and 0.8 ± 0.2 respectively (ratio of 1.6:1). Conclusions Here we describe a synthetic biology approach to rapidly optimize gene copy numbers to achieve efficient synergistic substrate hydrolysis. This study demonstrates how in vitro SCRaMbLE can be applied to rapidly combine gene constructs in various ratios to allow screening of synergistic enzyme activities for efficient substrate hydrolysis.

Hide Abstract

Light-regulated synthesis of extra-and intracellular enzymes related to wood degradation by the white rot fungus Cerrena unicolor during solid-state fermentation on ash sawdust-based medium.

Pawlik, A., Jaszek, M., Sulej, J. & Janusz, G. (2019). Acta Biochimica Polonic, 66 (4), 419-425.

The light-dependent metabolism of the white rot basidiomycete Cerrena unicolor FCL139 has already been demonstrated using transcriptomic and Biolog-based approaches. To further analyze the influence of light on C. unicolor wood degradation, we measured the activity of an array of CAZymes (carbohydrate-active enzymes) and enzymes involved in the redox system of fungal cells associated with lignolysis. Extra- and intracellular enzymatic extracts were obtained from solid-state ash sawdust C. unicolor cultures cultivated for 14 days under red, blue, green, or white light conditions, or in the dark. Light greatly influenced the synthesis of MnP, total cellulases, endo-1,4-β-glucanase, endo-1,4-β-xylanase, catalase, and superoxide dismutase. The production of MnP and catalase was evidently stimulated by white light. It is also worth noticing that blue light caused a gradual increase in the activity of total cellulases throughout the entire period of C. unicolor growth. Moreover, endo-1,4-β-glucanase showed the highest activity on day 13 of fungus cultivation and the production of laccase and β-glucosidase appeared to be the least influenced by light. However, the strongest activity of the endo-1,4-β-xylanase was observed in the dark. It seemed that light not only influenced the regulation of the synthesis of the wood-degrading enzymes at different levels, but also acted indirectly by affecting production of enzymes managing harmful lignin by-products causing oxidative stress. The ability of the fungus to decompose woody plant material is clearly influenced by environmental factors.

Hide Abstract

The digestive system in Zygentoma as an insect model for high cellulase activity.

Pothula, R., Shirley, D., Perera, O. P., Klingeman, W. E., Oppert, C., Abdelgaffar, H. M., Johnson, H. M. Y. & Jurat-Fuentes, J. L. (2019). PloS One, 14(2), e0212505.

The digestive system of selected phytophagous insects has been examined as a potential prospecting resource for identification of novel cellulolytic enzymes with potential industrial applications. In contrast to other model species, however, limited detailed information is available that characterizes cellulolytic activity and systems in basal hexapod groups. As part of a screening effort to identify insects with highly active cellulolytic systems, we have for the first time, identified species of Zygentoma that displayed the highest relative cellulase activity levels when compared to all other tested insect groups under the experimental conditions, including model species for cellulolytic systems such as termite and cockroach species in Rhinotermitidae (formerly Isoptera) and Cryptocercidae (formerly Blattodea). The goal of the present study was to provide a morphohistological characterization of cellulose digestion and to identify highly active cellulase enzymes present in digestive fluids of Zygentoma species. Morphohistological characterization supported no relevant differences in the digestive system of firebrat (Thermobia domestica) and the gray silverfish (Ctenolepisma longicaudata). Quantitative and qualitative cellulase assays identified the foregut as the region with the highest levels of cellulase activity in both T. domestica and C. longicaudata. However, T. domestica was found to have higher endoglucanase, xylanase and pectinase activities compared to C. longicaudata. Using nano liquid chromatography coupled to tandem mass spectrometry (nanoLC/MS/MS) and a custom gut transcriptome we identified cellulolytic enzymes from digestive fluids of Tdomestica. Among the identified enzymes we report putative endoglucanases matching to insect or arthropod enzymes and glucan endo-1,6-β-glucosidases matching bacterial enzymes. These findings support combined activities of endogenous and symbiont-derived plant cell wall degrading enzymes in lignocellulose digestion in Zygentoma and advance our understanding of cellulose digestion in a primitive insect group.

Hide Abstract
Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes.

Gong, G., Kim, S., Lee, S. M., Woo, H. M., Park, T. H., & Um, Y. (2017). Journal of Biotechnology, 254, 59-62.

Technologies for degradation of three major components of lignocellulose (e.g. cellulose, hemicellulose and lignin) are needed to efficiently utilize lignocellulose. Here, we report Bacillus sp. 275 isolated from a mudflat exhibiting various lignocellulolytic activities including cellulase, xylanase, laccase and peroxidase in the cell culture supernatant. The complete genome of Bacillus sp. 275 strain contains 3832 protein cording sequences and an average G + C content of 46.32% on one chromosome (4045,581bp) and one plasmid (6389bp). The genes encoding enzymes related to the degradation of cellulose, xylan and lignin were detected in the Bacillus sp. 275 genome. In addition, the genes encoding glucosidases that hydrolyze starch, mannan, galactoside and arabinan were also found in the genome, implying that Bacillus sp. 275 has potentially a wide range of uses in the degradation of polysaccharide in lignocellulosic biomasses.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Cellulase Assay Kit CellG3 Method K-CellG3
Cellulase Assay Kit (CellG3 Method)
Amyloglucosidase Assay Reagent R-AMGR3
Amyloglucosidase Assay Reagent
beta-Glucazyme Tablets T-BGZ
β-Glucazyme Tablets
Cellazyme T Tablets T-CTZ
Cellazyme T Tablets
Cellazyme C Tablets T-CCZ
Cellazyme C Tablets
D-Glucose HK Assay Kit  K-GLUHK
D-Glucose HK Assay Kit
Megazyme Incubation Bath MK III D-IBMKIII
Megazyme Incubation Bath MK III
Carboxymethyl Cellulose 4M P-CMC4M
Carboxymethyl Cellulose 4M