The product has been successfully added to your shopping list.

α-Galactosidase (Aspergillus niger) Powder

Product code: E-AGLANP
€245.00

3,000 Units

Prices exclude VAT

Available for shipping

North American customers click here
Content: 3,000 Units
Shipping Temperature: Ambient
Storage Temperature: Below -10oC
Formulation: Supplied as a freeze-dried powder
Physical Form: Powder
Stability: > 1 year under recommended storage conditions
Enzyme Activity: α-Galactosidase
EC Number: 3.2.1.22
CAZy Family: GH36
CAS Number: 9025-35-8
Synonyms: alpha-galactosidase; alpha-D-galactoside galactohydrolase
Source: Aspergillus niger
Molecular Weight: 97,000
Expression: Purified from Aspergillus niger
Specificity: Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids.
Specific Activity: ~ 620 U/mg (40oC, pH 4.5 on p-nitrophenyl-α-D-galactopyranoside)
Unit Definition: One Unit of activity is the amount of enzyme required to release one µmole of p-nitrophenol (pNP) per minute from p-nitrophenyl-α-D-galactopyranoside per min at pH 4.5 and 40oC.
Temperature Optima: 60oC
pH Optima: 4.5
Application examples: Applications in carbohydrate and glycobiology research.

High purity α-Galactosidase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Need more CAZymes and glycoenzymes? See all enzyme products for Carbohydrate Active enZYmes and glycobiology research.

Documents
Certificate of Analysis
Safety Data Sheet
Data Sheet
Publications
Megazyme publication
Galactomannan changes in developing Gleditsia Triacanthos Seeds.

Mallett, I., McCleary, B. V. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Galactomannan has been extracted from the endosperm of seeds of Gleditsia triacanthos (honey locust) at different stages of development, when the seed was accumulating storage material. Properties of the different samples have been studied. The molecular size distribution became more disperse as galactomannan accumulated and the galactose: mannose ratio decreased slightly. Some possible reasons for these changes are discussed.

Hide Abstract
Megazyme publication
Effect of galactose-substitution-patterns on the interaction properties of galactomannas.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Carbohydrate Research, 147(2), 275-294.

A range of galactomannans varying widely in the contents of D-galactose have been compared for self-association and their interaction properties with agarose and xanthan. Whereas, in general, the most interactive galactomannans are those in which the (1→4)-β-D-mannan chain is least substituted by α-D-galactosyl stubs, evidence is presented which indicates that the distribution of D-galactosyl groups along the backbone (fine structure) can have a significant effect on the interaction properties. For galactomannans containing <30% of D-galactose, those which contain a higher frequency of unsubstituted blocks of intermediate length in the β-D-mannan chain are most interactive. For galactomannans containing >40% of D-galactose, those which contain a higher frequency of exactly alternating regions in the β-D-mannan chain are most interactive. This selectivity, on the basis of galactomannan fine-structure, in mixed polysaccharide interactions in vitro could mimic the selectivity of binding of branched plant-cell-wall polysaccharides in biological systems.

Hide Abstract
Megazyme publication

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

A range of galactomannans varying widely in the content of D-galactose have been compared for self-association, and their interaction properties with agarose and xanthan. The results presented indicate that in general the most interactive galactomannans are those in which the D-mannan main chain bears fewest D-galactose stubs, and confirm that the distribution of D-galactose groups along the main chain can have a significant effect on the interactive properties of the galactomannans. It has been shown that freeze — thaw precipitation of galactomannans requires regions of totally unsubstituted D-mannose residues along the main chain, and that a threshold for significant freeze — thaw precipitation occurs at a weight-average length of totally unsubstituted residues of approximately six. For galactomannans having structures above this threshold their interactive properties with other polysaccharides are controlled by structural features associated with totally unsubstituted regions of the D-mannan backbone. In contrast, for galactomannans below this threshold, their interactive properties are controlled by structural features associated with unsubstituted sides of D-mannan backbone.

Hide Abstract
Megazyme publication
The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

The distribution of D-galactosyl groups along the D-mannan backbone (fine structure) of carob and guar galactomannans has been studied by a computer analysis of the amounts and structures of oligosaccharides released on hydrolysis of the polymers with two highly purified β-D-mannanases isolated from germinated guar seed and from Aspergillus niger cultures. Computer programmes were developed which accounted for the specific subsite-binding requirements of the β-D-mannanases and which simulated the synthesis of galactomannan by processes in which the D-galactosyl groups were transferred to the growing D-mannan chain in either a statistically random manner or as influenced by nearest-neighbour/second-nearest-neighbour substitution. Such a model was chosen as it is consistent with the known pattern of synthesis of similar polysaccharides, for example, xyloglucan; also, addition to a preformed mannan chain would be unlikely, due to the insoluble nature of such polymers. The D-galactose distribution in carob galactomannan and in the hot- and cold-water-soluble fractions of carob galactomannan has been shown to be non-regular, with a high proportion of substituted couplets, lesser amounts of triplets, and an absence of blocks of substitution. The probability of sequences in which alternate D-mannosyl residues are substituted is low. The probability distribution of block sizes for unsubstituted D-mannosyl residues indicates that there is a higher proportion of blocks of intermediate size than would be present in a galactomannan with a statistically random D-galactose distribution. Based on the almost identical patterns of amounts of oligosaccharides produced on hydrolysis with β-D-mannanase, it appears that galactomannans from seed of a wide range of carob varities have the same fine-structure. The D-galactose distribution in guar-seed galactomannan also appears to be non-regular, and galactomannans from different guar-seed varieties appear to have the same fine-structure.

Hide Abstract
Megazyme publication
β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

β-D-Mannosidase (β-D-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-D-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-D-mannosidase, β-D-galactosidase, 2-acet-amido-2-deoxy-D-glucosidase, (1→4)-β-D-mannanase, and (1→4)-β-D-glucanase activities, almost devoid of α-D-galactosidase activity, and contaminated with <0.02% of β-D-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-D-manno-oligosaccharides of d.p. 3-5 (12.5mM). The initial rate of hydrolysis of (1→4)-linked β-D-manno-oligosaccharides of d.p. 2-5 and of reduced β-D-manno-oligosaccharides of d.p. 3-5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-D-mannopyranosides were readily hydrolysed. β-D-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-D-galactosyl-β-D-mannobiose and 63-α-D-galactosyl-β-D-mannotetraose, and at ~90 times the rate for β-D-mannobi-itol.

Hide Abstract
Megazyme publication
Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Hydrolysis of galactomannan in endosperms of germinating guar is due to the combined action of three enzymes, α-galactosidase, β-mannanase and exo-β-mannanase. α-Galactosidase and exo-β-mannanase activities occur both in endosperm and cotyledon tissue but β-mannanase occurs only in endosperms. On seed germination, β-mannanase and endospermic α-galactosidase are synthesized and activity changes parallel galactomannan degradation. Galactomannan degradation and synthesis of these two enzymes are inhibited by cycloheximide. In contrast, endospermic exo-β-mannanase is not synthesized on seed germination, but rather is already present throughout endosperm tissue. It has no action on native galactomannan. α-Galactosidase, β-mannanase and exo-β-mannanase have been purified to homogeneity and their separate and combined action in the hydrolysis of galactomannan and effect on the rate of uptake of carbohydrate by cotyledons, studied. Results obtained indicated that these three activities are sufficient to account for galactomannan degradation in vivo and, further, that all three are required. Cotyledons contain an active exo-β-mannanase and sugar-uptake experiments have shown that cotyledons can absorb mannobiose intact, indicating that this enzyme is involved in the complete degradation of galactomannan on seed germination.

Hide Abstract
Megazyme publication
Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Treatment of hot-water-soluble carob galactomannan with β-D-mannanases from A. niger or lucerne seed affords an array of D-galactose-containing β-D-mannosaccharides as well as β-D-manno-biose, -triose, and -tetraose (lucerne-seed enzyme only). The D-galactose-containing β-D-mannosaccharides of d.p. 3–9 produced by A. niger β-D-mannanase have been characterised, using enzymic, n.m.r., and chemical techniques, as 61-α-D-galactosyl-β-D-mannobiose, 61-α-D-galactosyl-β-D-mannotriose, 63,64-di-α-D-galactosyl-β-D-mannopentaose (the only heptasaccharide), and 63,64-di-α-D-galactosyl-β-D-mannohexaose, 64,65-di-α-D-galactosyl-β-D-mannohexaose, and 61, 63,64-tri-α-D-galactosyl-β-D-mannopentaose (the only octasaccharides). Four nonasaccharides have also been characterised. Penta- and hexa-saccharides were absent. Lucerne-seed β-D-mannanase produced the same branched tri-, tetra- and hepta-saccharides, and also penta- and hexa-saccharides that were characterised as 61-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannotetraose, 61,63-di-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannopentaose, and 64-α-D-galactosyl-β-D-mannopentaose. None of the oligosaccharides contained a D-galactose stub on the terminal D-mannosyl group nor were they substituted on the second D-mannosyl residue from the reducing terminal.

Hide Abstract
Megazyme publication
Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

Purified (1→4)-β-D-mannanase from Aspergillus niger and lucerne seeds has been incubated with mannosaccharides and end-reduced (1→4)-β-D-mannosaccharides and, from the products of hydrolysis, a cyclic reaction-sequence has been proposed. From the heterosaccharides released by hydrolysis of the hot-water-soluble fraction of carob galactomannan by A. niger β-D-mannanase, a pattern of binding between the β-D-mannan chain and the enzyme has been deduced. The products of hydrolysis with the β-D-mannanases from Irpex lacteus, Helix pomatia, Bacillus subtilis, and lucerne and guar seeds have also been determined, and the differences from the action of A. niger β-D-mannanase related to minor differences in substrate binding. The products of hydrolysis of glucomannan are consistent with those expected from the binding pattern proposed from the hydrolysis of galactomannan.

Hide Abstract
Megazyme publication
Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

A β-D-mannoside mannohydrolase enzyme has been purified to homogeneity from germinated guar-seeds. Difficulties associated with the extraction and purification appeared to be due to an interaction of the enzyme with other protein material. The purified enzyme hydrolysed various natural and synthetic substrates, including β-D-manno-oligosaccharides and reduced β-D-manno-oligosaccharides of degree of polymerisation 2 to 6, as well as p-nitrophenyl, naphthyl, and methylumbelliferyl β-D-mannopyranosides. The preferred, natural substrate was β-D-mannopentaose, which was hydrolysed at twice the rate of β-D-mannotetraose and five times the rate of β-D-mannotriose. This result, together with the observation that α-D-mannose is released on hydrolysis, indicates that the enzyme is an exo-β-D-mannanase.

Hide Abstract
Megazyme publication
Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

N.m.r., enzymic, and chemical techniques have been used to characterise the D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob and L. leucocephala D-galacto-D-mannans by Driselase β-D-mannanase. These oligosaccharides were shown to be exclusively 61-α-D-galactosyl-β-D-mannobiose and 61-α-D-galactosyl-β-D-mannotriose. Furthermore, these were the only D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob D-galacto-D-mannan by β-D-mannanases from other sources, including Bacillus subtilis, Aspergillus niger, Helix pomatia gut solution, and germinated legumes. Acid hydrolysis of lucerne galactomannan yielded 61-α-D-galactosyl-β-D-mannobiose and 62-α-D-galactosyl-β-D-mannobiose.

Hide Abstract
Megazyme publication

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

An enzymic technique has been developed for the rapid and accurate quantitation of the galactomannan content of guar seeds and milling fractions. The technique involves the measurement of the galactose component of galactomannans using galactose dehydrogenase. The galactomannans are converted to galactose and manno-oligosaccharides using partially purified enzymes from a commercial preparation and from germinated guar seeds. Simple procedures have been devised for the preparation of these enzymes. Application of the technique to a number of guar varieties gave values for the galactomannan content ranging from 22.7 to 30.8% of seed weight.

Hide Abstract
Megazyme publication
Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

β-Mannanase activities in the commercial enzyme preparations Driselase and Cellulase, in culture solutions of Bacillus subtilis (TX1), in commercial snail gut (Helix pomatia) preparations and in germinated seeds of lucerne, Leucaena leucocephala and honey locust, have been purified by substrate affinity chromatography on glucomannan-AH-Sepharose. On isoelectric focusing, multiple protein bands were found, all of which had β-mannanase activity. Each preparation appeared as a single major band on SDS-polyacrylamide gel electrophoresis. The enzymes varied in their final specific activities, Km values, optimal pH, isoelectric points and pH and temperature stabilities but had similar MWs. The enzymes have different abilities to hydrolyse galactomannans which are highly substituted with galactose. The preparations Driselase and Cellulase contain β-mannanases which can attack highly substituted galactomannans at points of single unsubstituted D-mannosyl residues if the D-galactose residues in the vicinity of the bond to be hydrolysed are all on only one side of the main chain.

Hide Abstract
Megazyme publication
Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

A series of galactomannans with varying degrees of galactose substitution have been extracted from the endosperms of legume seeds with water and alkali and the amount of substitution required for water solubility has been determined. Some were heterogeneous with respect to the degree of galactose substitution. The structural requirements for hydrolysis by plant β-mannanase have been studied using the relative rates and extents of hydrolysis of these galactomannans. A more detailed examination of the products of hydrolysis of carob galactomannan has been made. At least two contiguous anhydromannose units appear to be needed for scission. This is similar to the requirement for hydrolysis by microbial enzymes. Judas tree (Cercis siliquastrum) endosperm contained a polysaccharide with a unique composition for a legume seed reserve. Gel chromatography and electrophoresis on cellulose acetate indicated homogeneity. Hydrolysis with a mixture of β-mannanase and α-galactosidase gave a glucose-mannose disaccharide and acetolysis gave a galactose-mannose. These results, as well as the pattern of hydrolysis by β-mannanase were consistent with a galactoglucomannan structure.

Hide Abstract
Megazyme publication
Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Structural changes in galactomannan on germination of lucerne, carob, honey locust, guar and soybean seeds, as measured by viscosity, elution volumes on gel filtration and ultra-centrifugation were slight consistent with a rapid and complete hydrolysis of a molecule once hydrolysis of the mannan chain starts. β-Mannanase activity increased and then decreased, paralleling galactomannan depletion. Multiple forms of β-mannanase were isolated and these were located in the endosperm. β-Mannanase had limited ability to hydrolyse galactomannans with high galactose contents. Seeds containing these galactomannans had very active α-galactosidases. β-Mannosidases were present in both endosperm and cotyledon-embryo and could be separated chromatographically. The level of activity was just sufficient to account for mannose production from manno-oligosaccharides.

Hide Abstract
Megazyme publication
α-D-galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1974). Phytochemistry, 13(9), 1747-1757.

Germinating seeds of lucerne, guar, carob and soybean initially depleted raffinose series oligosaccharides and then galactomannan. This depletion was accompanied by a rapid increase and then a decrease in α-galactosidase levels. Lucerne and guar contained two α-galactosidase activities, carob three and soybean four. One of these in each plant, from its location in the endosperm, time of appearance and kinetic behaviour, appeared to be primarily involved in galactomannan hydrolysis. This enzyme in lucerne had MW of 23 000 and could not be separated from β-mannanase by (NH4)2SO4 fractionation, DEAE, CM or SE-cellulose chromatography or gel filtration, but only by polyacrylamide gel electrophoresis. In guar, carob and soybean, it could be separated by ion-exchange chromatography and gel filtration. In lucerne, carob and guar most of the total increase in activity was due to this enzyme. The other α-galactosidases had MWs of about 35 000 and could be separated from β-mannanase by dissection, ion exchange cellulose chromatography and gel filtration. They were located in the cotyledon-embryo and appeared to be primarily involved in galactosylsucrose oligosaccharide hydrolysis.

Hide Abstract
Publication

Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten.

Atzler, J. J., Sahin, A. W., Gallagher, E., Zannini, E. & Arendt, E. K. (2021). European Food Research and Technology, 1-19.

Consumption of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) often induces symptoms of irritable bowel syndrome (IBS). Since FODMAPs and dietary fibre (DF) share certain characteristics, IBS-patients have a limited intake of DF. Therefore, enrichment of a low FODMAP model bread (based on 84% wheat starch and 16% vital gluten) with various fibres (bamboo, cellulose, psyllium, guar gum) in two different concentrations (3 g/100 g and 6 g/100 g) was investigated. Physico-chemical properties of doughs and breads were analysed (fermentation quality, gluten development, specific volume and hardness), as well as the release of reducing sugars during in vitro digestion. High performance anion exchange chromatography with coupled pulsed amperometric detection (HPAEC-PAD) was used to determine the FODMAP levels (contents of mannitol, sorbitol, fructose in excess of glucose, fructans and α-galactooligosaccharides) of both dough and bread. Prototypes were compared with wheat flour-based breads (bakers’ flour with and without wheat bran addition) to assess the performance of these prototypes. Prototypes showed a decreased quality compared to a baker’s flour control, however, a quality comparable to commercial wheat bran breads was found. This in combination with a lower release of reducing sugars during in vitro digestion underline the potential of fibre enriched breads as part of a healthier and more palateable low FODMAP diet. Furthermore, this study highlights the importance of the type (viscous and insoluble) and the concentration of fibres used. Application of psyllium in a concentration of 3 g/100 g showed the most beneficial impact on both physical (specific volume, hardness after 0 h and 24 h) and nutritional aspects of bread.

Hide Abstract
Publication
Effect of abandonment and plant classification on carbohydrate reserves of meadow plants.

Janeček, Š., Lanta, V., Klimešová, J. & Doležal, J. (2011). Plant Biology, 13(2), 243-251.

We studied the effect of cessation of management on carbohydrate reserves of plants in meadows with different environmental characteristics and plant composition. We recorded storage carbohydrates and seasonal changes for 40 plant species. We asked whether there are differences in responses of carbohydrate reserves in forbs versus graminoids and in plants storing starch versus plants storing osmotically active carbohydrates. We analysed belowground organs before the meadows were mown and at the end of the vegetation season in mown versus recently abandoned plots. Whereas starch and fructans were widely distributed, raffinose family oligosaccharides were the main carbohydrate reserves of the Lamiaceae and Plantago lanceolata. Properties of carbohydrate reserves differed between forbs and graminoids but no difference was found between plants storing starch versus osmotically active carbohydrates. Graminoids had lower carbohydrate concentrations than forbs. We observed a positive effect of mowing on carbohydrate concentrations of graminoids in the dry, calcium-rich meadow and higher seasonal fluctuations of these values in the acid, wet meadow, suggesting that local factors and/or the species pool affect carbohydrate reserves. Despite local conditions, graminoids represent a distinct functional group in meadows from the point of view of their storage economy. We suggest that as well as growth, storage processes should also be considered for understanding the functioning of meadow plant communities.

Hide Abstract
Publication
Distribution and characterisation of fructan in wheat milling fractions.

Haskå, L., Nyman, M. & Andersson, R. (2008). Journal of Cereal Science, 48(3), 768-774.

Structure and health effects of inulin-type fructans have been extensively studied, while less is known about the properties of the graminan-type fructans in wheat. Arabinoxylan (AX) is another important indigestible component in cereal grains, which may have beneficial health effects. In this study, the fructan content in milling fractions of two wheat cultivars was determined and related to ash, dietary fibre and AX contents. The molecular weight distribution of the fructans was analysed with HPAEC-PAD and MALDI-TOF MS using 1H NMR and enzymatic hydrolysis for identification of fructans. The fructan content (g/100 g) ranged from 1.5 ± 0.2 in flour to 3.6 ± 0.5 in shorts and 3.7 ± 0.3 in bran. A correlation was found between fructan content and dietary fibre content (r = 0.93, P < 0.001), but with a smaller variation in fructan content between inner and outer parts of the grain. About 50% of the dietary fibre consisted of AX in all fractions. The fructans were found to have a DP of up to 19 with a similar molecular weight distribution in the different fractions.

Hide Abstract
Safety Information
Symbol : GHS08
Signal Word : Danger
Hazard Statements : H334
Precautionary Statements : P261, P284, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
Galactomannan Guar Medium Viscosity P-GGMMV
Galactomannan (Guar; Medium Viscosity)
€0.00
Xanthan lyase Bacillus sp E-XANLB
Xanthan lyase (Bacillus sp.)
€0.00
endo-1-4 beta-Mannanase Aspergillus niger E-BMANN
endo-1,4 β-Mannanase (Aspergillus niger)
€187.00