The product has been successfully added to your shopping list.

61-α-D-Galactosyl-mannotriose

61-alpha-D-Galactosyl-mannotriose O-GM3
Product code: O-GM3
€0.00

20 mg

Prices exclude VAT

This product has been discontinued

Content: 20 mg
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 10 years under recommended storage conditions
CAS Number: 82220-78-8
Molecular Formula: C24H42O21
Molecular Weight: 666.6
Purity: > 95%
Substrate For (Enzyme): endo-1,4-β-Mannanase

This product has been discontinued (read more).

High purity 61-alpha-D-Galactosyl-mannotriose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

More additional products here - high purity oligosaccharides.

Documents
Certificate of Analysis
Safety Data Sheet
Data Sheet
Publications
Megazyme publication

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.

Hide Abstract
Megazyme publication
Galactomannan changes in developing Gleditsia Triacanthos Seeds.

Mallett, I., McCleary, B. V. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Galactomannan has been extracted from the endosperm of seeds of Gleditsia triacanthos (honey locust) at different stages of development, when the seed was accumulating storage material. Properties of the different samples have been studied. The molecular size distribution became more disperse as galactomannan accumulated and the galactose: mannose ratio decreased slightly. Some possible reasons for these changes are discussed.

Hide Abstract
Megazyme publication

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

A range of galactomannans varying widely in the content of D-galactose have been compared for self-association, and their interaction properties with agarose and xanthan. The results presented indicate that in general the most interactive galactomannans are those in which the D-mannan main chain bears fewest D-galactose stubs, and confirm that the distribution of D-galactose groups along the main chain can have a significant effect on the interactive properties of the galactomannans. It has been shown that freeze — thaw precipitation of galactomannans requires regions of totally unsubstituted D-mannose residues along the main chain, and that a threshold for significant freeze — thaw precipitation occurs at a weight-average length of totally unsubstituted residues of approximately six. For galactomannans having structures above this threshold their interactive properties with other polysaccharides are controlled by structural features associated with totally unsubstituted regions of the D-mannan backbone. In contrast, for galactomannans below this threshold, their interactive properties are controlled by structural features associated with unsubstituted sides of D-mannan backbone.

Hide Abstract
Megazyme publication
The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

The distribution of D-galactosyl groups along the D-mannan backbone (fine structure) of carob and guar galactomannans has been studied by a computer analysis of the amounts and structures of oligosaccharides released on hydrolysis of the polymers with two highly purified β-D-mannanases isolated from germinated guar seed and from Aspergillus niger cultures. Computer programmes were developed which accounted for the specific subsite-binding requirements of the β-D-mannanases and which simulated the synthesis of galactomannan by processes in which the D-galactosyl groups were transferred to the growing D-mannan chain in either a statistically random manner or as influenced by nearest-neighbour/second-nearest-neighbour substitution. Such a model was chosen as it is consistent with the known pattern of synthesis of similar polysaccharides, for example, xyloglucan; also, addition to a preformed mannan chain would be unlikely, due to the insoluble nature of such polymers. The D-galactose distribution in carob galactomannan and in the hot- and cold-water-soluble fractions of carob galactomannan has been shown to be non-regular, with a high proportion of substituted couplets, lesser amounts of triplets, and an absence of blocks of substitution. The probability of sequences in which alternate D-mannosyl residues are substituted is low. The probability distribution of block sizes for unsubstituted D-mannosyl residues indicates that there is a higher proportion of blocks of intermediate size than would be present in a galactomannan with a statistically random D-galactose distribution. Based on the almost identical patterns of amounts of oligosaccharides produced on hydrolysis with β-D-mannanase, it appears that galactomannans from seed of a wide range of carob varities have the same fine-structure. The D-galactose distribution in guar-seed galactomannan also appears to be non-regular, and galactomannans from different guar-seed varieties appear to have the same fine-structure.

Hide Abstract
Megazyme publication
β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

β-D-Mannosidase (β-D-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-D-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-D-mannosidase, β-D-galactosidase, 2-acet-amido-2-deoxy-D-glucosidase, (1→4)-β-D-mannanase, and (1→4)-β-D-glucanase activities, almost devoid of α-D-galactosidase activity, and contaminated with <0.02% of β-D-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-D-manno-oligosaccharides of d.p. 3-5 (12.5mM). The initial rate of hydrolysis of (1→4)-linked β-D-manno-oligosaccharides of d.p. 2-5 and of reduced β-D-manno-oligosaccharides of d.p. 3-5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-D-mannopyranosides were readily hydrolysed. β-D-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-D-galactosyl-β-D-mannobiose and 63-α-D-galactosyl-β-D-mannotetraose, and at ~90 times the rate for β-D-mannobi-itol.

Hide Abstract
Megazyme publication
Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Hydrolysis of galactomannan in endosperms of germinating guar is due to the combined action of three enzymes, α-galactosidase, β-mannanase and exo-β-mannanase. α-Galactosidase and exo-β-mannanase activities occur both in endosperm and cotyledon tissue but β-mannanase occurs only in endosperms. On seed germination, β-mannanase and endospermic α-galactosidase are synthesized and activity changes parallel galactomannan degradation. Galactomannan degradation and synthesis of these two enzymes are inhibited by cycloheximide. In contrast, endospermic exo-β-mannanase is not synthesized on seed germination, but rather is already present throughout endosperm tissue. It has no action on native galactomannan. α-Galactosidase, β-mannanase and exo-β-mannanase have been purified to homogeneity and their separate and combined action in the hydrolysis of galactomannan and effect on the rate of uptake of carbohydrate by cotyledons, studied. Results obtained indicated that these three activities are sufficient to account for galactomannan degradation in vivo and, further, that all three are required. Cotyledons contain an active exo-β-mannanase and sugar-uptake experiments have shown that cotyledons can absorb mannobiose intact, indicating that this enzyme is involved in the complete degradation of galactomannan on seed germination.

Hide Abstract
Megazyme publication
Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Treatment of hot-water-soluble carob galactomannan with β-D-mannanases from A. niger or lucerne seed affords an array of D-galactose-containing β-D-mannosaccharides as well as β-D-manno-biose, -triose, and -tetraose (lucerne-seed enzyme only). The D-galactose-containing β-D-mannosaccharides of d.p. 3–9 produced by A. niger β-D-mannanase have been characterised, using enzymic, n.m.r., and chemical techniques, as 61-α-D-galactosyl-β-D-mannobiose, 61-α-D-galactosyl-β-D-mannotriose, 63,64-di-α-D-galactosyl-β-D-mannopentaose (the only heptasaccharide), and 63,64-di-α-D-galactosyl-β-D-mannohexaose, 64,65-di-α-D-galactosyl-β-D-mannohexaose, and 61, 63,64-tri-α-D-galactosyl-β-D-mannopentaose (the only octasaccharides). Four nonasaccharides have also been characterised. Penta- and hexa-saccharides were absent. Lucerne-seed β-D-mannanase produced the same branched tri-, tetra- and hepta-saccharides, and also penta- and hexa-saccharides that were characterised as 61-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannotetraose, 61,63-di-α-D-galactosyl-β-D-mannotetraose, 63-α-D-galactosyl-β-D-mannopentaose, and 64-α-D-galactosyl-β-D-mannopentaose. None of the oligosaccharides contained a D-galactose stub on the terminal D-mannosyl group nor were they substituted on the second D-mannosyl residue from the reducing terminal.

Hide Abstract
Megazyme publication
Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

Purified (1→4)-β-D-mannanase from Aspergillus niger and lucerne seeds has been incubated with mannosaccharides and end-reduced (1→4)-β-D-mannosaccharides and, from the products of hydrolysis, a cyclic reaction-sequence has been proposed. From the heterosaccharides released by hydrolysis of the hot-water-soluble fraction of carob galactomannan by A. niger β-D-mannanase, a pattern of binding between the β-D-mannan chain and the enzyme has been deduced. The products of hydrolysis with the β-D-mannanases from Irpex lacteus, Helix pomatia, Bacillus subtilis, and lucerne and guar seeds have also been determined, and the differences from the action of A. niger β-D-mannanase related to minor differences in substrate binding. The products of hydrolysis of glucomannan are consistent with those expected from the binding pattern proposed from the hydrolysis of galactomannan.

Hide Abstract
Megazyme publication
Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

A β-D-mannoside mannohydrolase enzyme has been purified to homogeneity from germinated guar-seeds. Difficulties associated with the extraction and purification appeared to be due to an interaction of the enzyme with other protein material. The purified enzyme hydrolysed various natural and synthetic substrates, including β-D-manno-oligosaccharides and reduced β-D-manno-oligosaccharides of degree of polymerisation 2 to 6, as well as p-nitrophenyl, naphthyl, and methylumbelliferyl β-D-mannopyranosides. The preferred, natural substrate was β-D-mannopentaose, which was hydrolysed at twice the rate of β-D-mannotetraose and five times the rate of β-D-mannotriose. This result, together with the observation that α-D-mannose is released on hydrolysis, indicates that the enzyme is an exo-β-D-mannanase.

Hide Abstract
Megazyme publication
Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

N.m.r., enzymic, and chemical techniques have been used to characterise the D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob and L. leucocephala D-galacto-D-mannans by Driselase β-D-mannanase. These oligosaccharides were shown to be exclusively 61-α-D-galactosyl-β-D-mannobiose and 61-α-D-galactosyl-β-D-mannotriose. Furthermore, these were the only D-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob D-galacto-D-mannan by β-D-mannanases from other sources, including Bacillus subtilis, Aspergillus niger, Helix pomatia gut solution, and germinated legumes. Acid hydrolysis of lucerne galactomannan yielded 61-α-D-galactosyl-β-D-mannobiose and 62-α-D-galactosyl-β-D-mannobiose.

Hide Abstract
Megazyme publication

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

An enzymic technique has been developed for the rapid and accurate quantitation of the galactomannan content of guar seeds and milling fractions. The technique involves the measurement of the galactose component of galactomannans using galactose dehydrogenase. The galactomannans are converted to galactose and manno-oligosaccharides using partially purified enzymes from a commercial preparation and from germinated guar seeds. Simple procedures have been devised for the preparation of these enzymes. Application of the technique to a number of guar varieties gave values for the galactomannan content ranging from 22.7 to 30.8% of seed weight.

Hide Abstract
Megazyme publication
Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

β-Mannanase activities in the commercial enzyme preparations Driselase and Cellulase, in culture solutions of Bacillus subtilis (TX1), in commercial snail gut (Helix pomatia) preparations and in germinated seeds of lucerne, Leucaena leucocephala and honey locust, have been purified by substrate affinity chromatography on glucomannan-AH-Sepharose. On isoelectric focusing, multiple protein bands were found, all of which had β-mannanase activity. Each preparation appeared as a single major band on SDS-polyacrylamide gel electrophoresis. The enzymes varied in their final specific activities, Km values, optimal pH, isoelectric points and pH and temperature stabilities but had similar MWs. The enzymes have different abilities to hydrolyse galactomannans which are highly substituted with galactose. The preparations Driselase and Cellulase contain β-mannanases which can attack highly substituted galactomannans at points of single unsubstituted D-mannosyl residues if the D-galactose residues in the vicinity of the bond to be hydrolysed are all on only one side of the main chain.

Hide Abstract
Megazyme publication
Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

A series of galactomannans with varying degrees of galactose substitution have been extracted from the endosperms of legume seeds with water and alkali and the amount of substitution required for water solubility has been determined. Some were heterogeneous with respect to the degree of galactose substitution. The structural requirements for hydrolysis by plant β-mannanase have been studied using the relative rates and extents of hydrolysis of these galactomannans. A more detailed examination of the products of hydrolysis of carob galactomannan has been made. At least two contiguous anhydromannose units appear to be needed for scission. This is similar to the requirement for hydrolysis by microbial enzymes. Judas tree (Cercis siliquastrum) endosperm contained a polysaccharide with a unique composition for a legume seed reserve. Gel chromatography and electrophoresis on cellulose acetate indicated homogeneity. Hydrolysis with a mixture of β-mannanase and α-galactosidase gave a glucose-mannose disaccharide and acetolysis gave a galactose-mannose. These results, as well as the pattern of hydrolysis by β-mannanase were consistent with a galactoglucomannan structure.

Hide Abstract
Megazyme publication
Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Structural changes in galactomannan on germination of lucerne, carob, honey locust, guar and soybean seeds, as measured by viscosity, elution volumes on gel filtration and ultra-centrifugation were slight consistent with a rapid and complete hydrolysis of a molecule once hydrolysis of the mannan chain starts. β-Mannanase activity increased and then decreased, paralleling galactomannan depletion. Multiple forms of β-mannanase were isolated and these were located in the endosperm. β-Mannanase had limited ability to hydrolyse galactomannans with high galactose contents. Seeds containing these galactomannans had very active α-galactosidases. β-Mannosidases were present in both endosperm and cotyledon-embryo and could be separated chromatographically. The level of activity was just sufficient to account for mannose production from manno-oligosaccharides.

Hide Abstract
Publication
Phylogenetic analysis and substrate specificity of GH2 β-mannosidases from Aspergillus species.

Reddy, S. K., Rosengren, A., Klaubauf, S., Kulkarni, T., Karlsson, E. N., de Vries, R. P. & Stålbrand, H. (2013). FEBS Letters, 587(21), 3444-3449.

Phylogenetic analysis of glycoside hydrolase family 2 including Aspergillus sequences and characterised β-mannosidases from other organisms, clusters putative Aspergillus β-mannosidases in two distinct clades (A and B). Aspergillus species have at least one paralog in each of the two clades. It appears that clade A members are extracellular and clade B members intracellular. Substrate specificity analysis of MndA of Aspergillus niger (clade A) and MndB of Aspergillus nidulans (clade B) show that MndB, in contrast to MndA, does not hydrolyse polymeric mannan and has probably evolved to hydrolyse small unbranched β-mannosides like mannobiose. A 3D-model of MndB provides further insight.

Hide Abstract
Publication
Substrate Specificities of α-Galactosidase from Rice.

Li, S. H., Zhu, M. P. & Li, T. P. (2011). Advanced Materials Research, 183, 447-451.

The α-galactosidase from rice cleaved not only α-D-galactosyl residues from the non-reducing end of substrates such as melibiose, raffinose and stachyose, but also liberated the terminal galactosyl residues attached O-6 position of the reducing-end mannosyl residue in mannobiose and mannotriose. In addition, the enzyme tore off the stubbed galactosyl residues attached inner-mannosyl residues in mannopentaose. It also could catalyze efficient degalactosylation of galactomannans, such as guar gum and locust bean gum.

Hide Abstract
Publication
Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by β-mannanase.

Roos, A. A., Edlund, U., Sjoberg, J., Albertsson, A. C. & Stålbrand, H. (2008). Biomacromolecules, 9(8), 2104-2110.

O-Acetyl-galactoglucomannan (AcGGM) is the major soft-wood hemicellulose. Structurally modified AcGGM and hydrogels of AcGGM were prepared. The degree of substitution (DS) of AcGGM was modified enzymatically with α-galactosidase, and chemically with an acrylate derivative, 2-hydroxyethylmethacrylate (HEMA). The hydrolysis of AcGGM with β-mannanase was shown to increase with decreasing DS. AcGGM hydrogels were prepared from chemically modified AcGGM with varying DS of HEMA. Bovine serum albumin (BSA) was encapsulated in hydrogels. A spontaneous burst release of BSA was decreased with increased DS of HEMA. The addition of β-mannanase significantly enhanced the BSA release from hydrogels with a DS of 0.36, reaching a maximum of 95% released BSA after eight hours compared to 60% without enzyme. Thus, both the pendant group composition and the enzyme action are valuable tools in the tailoring of hydrogel release profiles of potential interest for intestine drug delivery.

Hide Abstract
Publication

A gene encoding a novel multidomain β-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp.

Sunna, A., Gibbs, M. D., Chin, C. W. J., Nelson, P. J. & Bergquist, P. L. (2000). Applied and Environmental Microbiology, 66(2), 664-670.

Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a β-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85°C and pH 6.0 and was extremely thermostable at 70°C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable β-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.

Hide Abstract
Publication
Purification and some properties of a thermostable acidic endo‐β-1, 4‐D‐mannanase from Sclerotium (Athelia) rolfsii.

Sachslehner, A. & Haltrich, D. (1999). FEMS Microbiology Letters, 177(1), 47-55.

The phytopathogenic fungus Sclerotium (Athelia) rolfsii forms one major endo-β-1,4-D-mannanase (EC 3.2.1.78) under non-induced and derepressed conditions, i.e. after depletion of glucose which was used as the only carbohydrate substrate for its cultivation. This mannanase was purified to electrophoretic homogeneity by ammonium sulfate precipitation, hydrophobic interaction chromatography, anion exchange chromatography and gel filtration. The enzyme is a glycoprotein with a molecular mass of 46.5±2 kDa (SDS-PAGE), an isoelectric point of 2.75, and a pH optimum of 3.0–3.5. The enzyme is especially stable in the acidic region with an exceptional half-life of activity of 41 days at pH 4.5 and 50°C. It exerts activity on β-1,4-mannan from ivory nut, which is hydrolyzed mainly to mannobiose and mannotriose, as well as on glucomannan, galactomannan, galactoglucomannan, and mannooligosaccharides not smaller than mannotetraose. The main end-products mannotriose and to a lesser extent mannobiose inhibit its activity moderately.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed