
20 mg
Prices exclude VAT
Available for shipping
Content: | 20 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Below -10oC |
Physical Form: | Powder |
Stability: | > 10 years under recommended storage conditions |
CAS Number: | 28152-46-7 |
Molecular Formula: | C18H32O16 |
Molecular Weight: | 504.44 |
Purity: | > 95% |
Substrate For (Enzyme): | β-Mannosidase |
High purity 1,4-β-D-Mannosyl-1,4-β-D-Glucosyl-D-Mannose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
33-β-D-Glucosyl-cellotriose
(Aspergillus niger) E-CELBA - Cellulase (endo-1,4-β-D-glucanase)
(Bacillus amyloliquefaciens) E-CELTE - Cellulase (endo-1,4-β-D-glucanase)
(Talaromyces emersonii) E-CELTH - Cellulase (endo-1,4-β-D-glucanase)
(Thermobifida halotolerans) E-CELTR - Cellulase (endo-1,4-β-D-glucanase)
(Trichoderma longibrachiatum) E-CELTM - Cellulase (endo-1,4-β-D-glucanase)
(Thermotoga maritima) E-BMANN - endo-1,4 β-Mannanase (Aspergillus niger) E-BMABS - endo-1,4 β-Mannanase (Bacillus sp.) E-BMABC - endo-1,4-β-Mannanase (Bacillus circulans) E-BMACJ - endo-1,4 β-Mannanase (Cellvibrio japonicus) E-BMATM - endo-1,4 β-Mannanase (Thermotoga maritima) E-BMOSCF - β-Mannosidase (Cellulomonas fimi) E-BGLUC - β-Glucosidase (Aspergillus niger) E-BGOSAG - β-Glucosidase (Agrobacterium sp.) E-BGOSPC - β-Glucosidase (Phanerochaete chrysosporium) E-BGOSTM - β-Glucosidase (Thermotoga maritima) E-EXBGOS - exo-1,3-β-D-Glucanase + β-Glucosidase
Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate.
Klinchongkon, K., Bunyakiat, T., Khuwijitjaru, P. & Adachi, S. (2019). Food and Bioprocess Technology, 12(7), 1197-1204.
Subcritical water hydrolysis is an effective method for producing mannooligosaccharides from coconut meal, which is a by-product from coconut milk processing. In this study, the purification process to obtain mannooligosaccharides from coconut meal hydrolysate was investigated. The effects of adsorbent (activated carbon and bentonite), concentration (1-10% w/v), and adsorption time (5-60 min) were studied for impurities removal. The activated carbon showed much higher efficiency for impurities removal. Mannooligosaccharides were precipitated using ethanol at different concentrations (0-90% v/v) and initial carbohydrate contents (50, 100, and 200 g/L). The results showed that the ethanol concentration at 90% v/v and initial carbohydrate content of 200 g/L gave the highest recovery of saccharides (31 g/L). The obtained precipitate contained 9.7, 22.6, 12.9, 19.4, 19.4, and 16.1% w/w of saccharides with 1 to 6 degree of polymerization, respectively.
Hide Abstract