The product has been successfully added to your shopping list.

Glucomannan (Konjac; Low Viscosity)

Glucomannan Konjac Low Viscosity P-GLCML
Product code: P-GLCML
€142.00

4 g

Prices exclude VAT

Available for shipping

Content: 4 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 10 years under recommended storage conditions
CAS Number: 11078-31-2
Source: Konjac tubers
Purity: > 98%
Viscosity: ~ 10 cSt
Monosaccharides (%): Mannose: Glucose = 60: 40
Main Chain Glycosidic Linkage: β-1,4
Substrate For (Enzyme): endo-1,4-β-Glucanase, endo-Cellulase

High purity Glucomannan (Konjac; Low Viscosity) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Publication
A novel method to quantify β-glucan in processed foods: Sodium hypochlorite Extracting and Enzymatic Digesting (SEED) assay.

Ide, M., Okumura, M., Koizumi, K., Kumagai, M., Yoshida, I., Yoshida, M., Mishima, T. & Nakamura, M. (2018). Journal of Agricultural and Food Chemistry, In Press.

Some β-glucans have attracted attention due to their functionality as an immunostimulant and have been used in processed foods. However, accurately measuring the β-glucan content of processed foods using existing methods is difficult. We demonstrate a new method, the Sodium hypochlorite Extracting and Enzymatic Digesting (SEED) assay, in which β-glucan is extracted using sodium hypochlorite, dimethyl sulfoxide, and 5 mol/L sodium hydroxide and then digested into β-glucan fragments using Westase which is an enzyme having β-1,6- and β-1,3 glucanase activity. The β-glucan fragments are further digested into glucose using exo-1,3-β-D-glucanase and β-glucosidase. We measured β-glucan comprising β-1,3-, -1,6-, and -1,(3),4- bonds in various polysaccharide reagents and processed foods using our novel method. The SEED assay was able to quantify β-glucan with good reproducibility, and the recovery rate was >90% for food containing β-glucan. Therefore, the SEED assay is capable of accurately measuring the β-glucan content of processed foods.

Hide Abstract
Publication
Trp residue at subsite - 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut.

Hsu, Y., Koizumi, H., Otagiri, M., Moriya, S. & Arioka, M. (2018). Applied Microbiology and Biotechnology, 1-11.

Symbiotic protists in the hindgut of termites provide a novel enzymatic resource for efficient lignocellulytic degradation of plant biomass. In this study, two β-mannanases, RsMan26A and RsMan26B, from a symbiotic protist community of the lower termite, Reticulitermes speratus, were successfully expressed in the methylotrophic yeast, Pichia pastoris. Biochemical characterization experiments demonstrated that both RsMan26A and RsMan26B are endo-acting enzymes and have a very similar substrate specificity, displaying a higher catalytic efficiency to galactomannan from locust bean gum (LBG) and glucomannan than to β-1,4-mannan and highly substituted galactomannan from guar gum. Homology modeling of RsMan26A and RsMan26B revealed that each enzyme displays a long open cleft harboring a unique hydrophobic platform (Trp79) that stacks against the sugar ring at subsite - 5. The Km) values of W79A mutants of RsMan26A and RsMan26B to LBG increased by 4.8-fold and 3.6-fold, respectively, compared with those for the native enzymes, while the kcat) remained unchanged or about 40% of that of the native enzyme, resulting in the decrease in the catalytic efficiency by 4.8-fold and 9.1-fold, respectively. The kinetic values for glucomannan also showed a similar result. These results demonstrate that the Trp residue present near the subsite - 5 has an important role in the recognition of the sugar ring in the substrate.

Hide Abstract
Publication
Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris.

Cha, J. H., Yoon, J. J. & Cha, C. J. (2018). Applied Microbiology and Biotechnology, 102(15), 6515-6523.

A gene encoding an endoglucanase belonging to subfamily C of glycoside hydrolase family 45 (GH45) was identified in the brown rot fungus Fomitopsis palustris and functionally expressed in Pichia pastoris. The recombinant protein displayed hydrolytic activities toward various substrates such as carboxymethyl cellulose, phosphoric acid swollen cellulose, glucomannan, lichenan, and β-glucan. In particular, the enzyme had a unique catalytic efficiency on β-1,4-glucans rather than mixed β-1,3/1,4-glucans as compared to other GH45 endoglucanases. The fungal enzyme was relatively thermostable, retaining more than 91.4% activity at 80°C for 1 h. Site-directed mutagenesis studies revealed that the mutants N95D and D117N had significantly reduced enzymatic activities, indicating that both residues are essential for the catalytic reaction. Our study expands knowledge and understanding of the catalytic mechanism of GH45 subfamily C enzymes and also suggests that this thermostable endoglucanase from F. palustris has great potential in industrial applications.

Hide Abstract
Publication
Host-linked soil viral ecology along a permafrost thaw gradient.

Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., et al. (2018). Nature Microbiology, 3, 870-880.

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.

Hide Abstract
Publication
Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum.

Fusco, F. A., Ronca, R., Fiorentino, G., Pedone, E., Contursi, P., Bartolucci, S. & Limauro, D. (2017). Extremophiles, 22(1), 131-140.

Dictyoglomus turgidum is a hyperthermophilic, anaerobic, gram-negative bacterium that shows an array of putative glycoside hydrolases (GHs) encoded by its genome, a feature that makes this microorganism very interesting for biotechnological applications. The aim of this work is the characterization of a hyperthermophilic GH5, Dtur_0671, of D. turgidum, annotated as endoglucanase and herein named DturCelB in agreement to DturCelA, which was previously characterized. The synthetic gene was expressed in Escherichia coli. The purified recombinant enzyme is active as a monomer (40 kDa) and CD structural studies showed a conserved α/β structure at different temperatures (25 and 70°C) and high thermoresistance (Tm of 88°C). Interestingly, the enzyme showed high endo-β-1,4-mannanase activity vs various mannans, but low endo-β-1,4 glucanase activity towards carboxymethylcellulose. The KM and Vmax of DturCelB were determined for both glucomannan and CMC: they were 4.70 mg/ml and 473.1 µmol/min mg and 1.83 mg/ml and 1.349 µmol/min mg, respectively. Its optimal activity towards temperature and pH resulted to be 70°C and pH 5.4, respectively. Further characterization highlighted good thermal stability (~ 50% of enzymatic activity after 2 h at 70°C) and pH stability over a broad range (> 90% of activity after 1 h in buffer, ranging pH 5-9); resistance to chemicals was also observed.

Hide Abstract
Publication
Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C.

Pires, V. M. R., Pereira, P. M. M., Brás, J. L. A., Correia, M., Cardoso, V., Bule, P., Alves, V. D., Najmudin, S., Venditto, I., Ferreira, L. M. A., Romão, M. J., Carvalho, A. L., Fontes, C. M. G. A. & Romão, M. J. (2017). Journal of Biological Chemistry, 292(12), 4847-4860.

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Hide Abstract
Publication
Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation.

Liu, B., Olson, Å., Wu, M., Broberg, A. & Sandgren, M. (2017). PloS One, 12(12), e0189479.

Lytic polysaccharide monooxygenases (LPMO) are important redox enzymes produced by microorganisms for the degradation of recalcitrant natural polysaccharides. Heterobasidion irregulare is a white-rot phytopathogenic fungus that causes wood decay in conifers. The genome of this fungus encodes 10 putative Auxiliary Activity family 9 (AA9) LPMOs. We describe the first biochemical characterization of H. irregulare LPMOs through heterologous expression of two CBM-containing LPMOs from this fungus (HiLPMO9H, HiLPMO9I) in Pichia pastoris. The oxidization preferences and substrate specificities of these two enzymes were determined. The two LPMOs were shown to cleave different carbohydrate components of plant cell walls. HiLPMO9H was active on cellulose and oxidized the substrate at the C1 carbon of the pyranose ring at β-1,4-glycosidic linkages, whereas HiLPMO9I cleaved cellulose with strict oxidization at the C4 carbon of glucose unit at internal bonds, and also showed activity against glucomannan. We propose that the two LPMOs play different roles in the plant-cell-wall degrading system of H. irregulare for degradation of softwood and that the lignocellulose degradation mediated by this white-rot fungus may require collective efforts from multi-types of LPMOs.

Hide Abstract
Publication
Divalent toxoids loaded stable chitosan–glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration.

Harde, H., Siddhapura, K., Agrawal, A. K. & Jain, S. (2015). International journal of pharmaceutics, 487(1), 292-304.

The present study reports dual tetanus and diphtheria toxoids loaded stable chitosan–glucomannan nanoassemblies (sCh–GM-NAs) formulated using tandem ionic gelation technique for oral mucosal immunization. The stable, lyophilized sCh–GM-NAs exhibited ~152 nm particle size and ~85% EE of both the toxoids. The lyophilized sCh–GM-NAs displayed excellent stability in biomimetic media and preserved chemical, conformation and biological stability of encapsulated toxoids. The higher intracellular APCs uptake of sCh–GM-NAs was concentration and time dependent which may be attributed to the receptor mediated endocytosis via mannose and glucose receptor. The higher Caco-2 uptake of sCh–GM-NAs was further confirmed by ex vivo intestinal uptake studies. The in vivo evaluation revealed that sCh–GM-NAs posed significantly (p < 0.001) higher humoral, mucosal and cellular immune response than other counterparts by eliciting complete protective levels of anti-TT and anti-DT (~0.1 IU/mL) antibodies. Importantly, commercial ‘Dual antigen’ vaccine administered through oral or intramuscular route was unable to elicit all type of immune response. Conclusively, sCh–GM-NAs could be considered as promising vaccine adjuvant for oral mucosal immunization.

Hide Abstract
Publication
Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways.

Alvarez-Vasco, C. & Zhang, X. (2013). Bioresource Technology, 150, 321-327.

This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose.

Hide Abstract
Publication
Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata.

Brennan, M., McLean, J. P., Altaner, C. M., Ralph, J. & Harris, P. J. (2012). Cellulose, 19(4), 1385-1404.

Four corewood types were examined from sapling trees of two clones of Pinus radiata grown in a glasshouse. Trees were grown either straight to produce normal corewood, tilted at 45° from the vertical to produce opposite corewood and compression corewood, or rocked to produce flexure corewood. Mean cellulose microfibril angle of tracheid walls was estimated by X-ray diffraction and longitudinal swelling measured between an oven dry and moisture saturated state. Lignin and acetyl contents of the woods were measured and the monosaccharide compositions of the cell-wall polysaccharides determined. Finely milled wood was analysed using solution-state 2D NMR spectroscopy of gels from finely milled wood in DMSO-d6/pyridine-d5. Although there was no significant difference in cellulose microfibril angle among the corewood types, compression corewood had the highest longitudinal swelling. A lignin content >32% and a galactosyl residue content >6% clearly divided severe compression corewood from the other corewood types. Relationships could be drawn between lignin content and longitudinal swelling, and between galactosyl residue content and longitudinal swelling. The 2D NMR spectra showed that the presence of H-units in lignin was exclusive to compression corewood, which also had a higher (1→4)- β-D-galactan content, defining a unique composition for that corewood type.

Hide Abstract
Publication
A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(4), 1933-1943.

Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this “tethered network” model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.

Hide Abstract
Publication
Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch.

Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J. & Baldwin, T. C. (2012). Carbohydrate Polymers, 87(3), 2202-2210.

Here we present a comparison of commonly used methodologies for the extraction and quantification of konjac glucomannan (KGM). Compositional analysis showed that the purified konjac flour (PKF) produced using a modified extraction procedure contained 92% glucomannan, with a weight average molecular weight (Mw), polydispersity index (PDI) and degree of acetylation (DA) of 9.5 ± 0.6 × 105 g mol-1, 1.2 and 2.8 wt.%. These data, plus Fourier-transform infrared spectral (FTIR) and zero shear viscosity analyses of the extract (PKF) were all consistent with the literature. Comparison of three existing methodologies for the quantitative analysis of the KGM content of the PKF, namely 3,5-dinitrosalicylic acid (3,5-DNS), phenol–sulphuric acid and enzymatic colorimetric assays; indicated that the 3,5-DNS colorimetric assay was the most reproducible and accurate method, with a linear correlation coefficient of 0.997 for samples ranging from 0.5 to 12.5 mg/ml, and recoveries between 97% and 103% across three spiking levels (250, 500 and 750 µg/g) of starch. These data provide the basis of improved good laboratory practice (GLP) for the commercial extraction and analysis of this multifunctional natural polymer.

Hide Abstract
Publication
Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase.

Mizutani, K., Fernandes, V. O., Karita, S., Luís, A. S., Sakka, M., Kimura, T., Jackson, A., Zhang, X., Fontes, C. M. G. A., Gilbert, H. J. & Sakka, K. (2012). Applied and Environmental Microbiology, 78(14), 4781-4787.

In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.

Hide Abstract
Publication
Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli.

Songsiriritthigul, C., Buranabanyat, B., Haltrich, D. & Yamabhai, M. (2010). Microbial Cell Factories, 9(1), 20.

Background: Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-β-mannosidase or 1,4-β-D-mannanase (EC 3.2.1.78), commonly named β-mannanase, is an enzyme that can catalyze random hydrolysis of β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-β-mannosidase gene (manB) from B. licheniformis. Results: The mannan endo-1,4-β-mannosidase gene (manB), commonly known as β-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 × His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 ± 96 units/mg. The optimal pH of the enzyme was between pH 6.0-7.0; whereas the optimal temperature was at 50-60°C. The recombinant β-mannanase was stable within pH 5-12 after incubation for 30 min at 50°C, and within pH 6-9 after incubation at 50°C for 24 h. The enzyme was stable at temperatures up to 50°C with a half-life time of activity (τ1/2) of approximately 80 h at 50°C and pH 6.0. Analysis of hydrolytic products by thin layer chromatography revealed that the main products from the bioconversion of locus bean gum and mannan were various manno-oligosaccharide products (M2-M6) and mannose. Conclusion: Our study demonstrates an efficient expression and secretion system for the production of a relatively thermo- and alkali-stable recombinant β-mannanase from B. licheniformis strain DSM13, suitable for various biotechnological applications.

Hide Abstract
Publication
Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01.

Bien-Cuong, D., Thi-Thu, D., Berrin, J. G., Haltrich, D., Kim-Anh, T., Sigoillot, J. C. & Yamabhai, M. (2009). Microbial Cell Factories, 8(1), 59.

Background: Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases) catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic mannooligosaccharides (MOS). Results: A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-D-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed β-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL) in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-β-D-mannan (from carob) are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the Kcat values for these substrates are 215 s-1, 330 s-1, 292 s-1 and 148 s-1, respectively. Judged from the specificity constants Kcat/ Km, glucomannan is the preferred substrate of the A. niger β-mannanase. Analysis by thin layer chromatography showed that the main product from enzymatic hydrolysis of locust bean gum is mannobiose, with only low amounts of mannotriose and higher manno-oligosaccharides formed. Conclusion: This study is the first report on the cloning and expression of a thermostable mannan endo-1,4-β-mannosidase from A. niger in Pichia pastoris. The efficient expression and ease of purification will significantly decrease the production costs of this enzyme. Taking advantage of its acidic pH optimum and high thermostability, this recombinant β-mannanase will be valuable in various biotechnological applications.

Hide Abstract
Publication
Xyloglucans of monocotyledons have diverse structures.

Hsieh, Y. S. & Harris, P. J. (2009). Molecular Plant, 2(5), 943-965.

Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were isolated, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analyzed by high-performance anion-exchange chromatography and by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Oligosaccharide profiles of the non-commelinid monocotyledons were similar to those of most eudicotyledons, indicating the xyloglucans were fucogalactoxyloglucans, with a XXXG a core motif and the fucosylated units XXFG and XLFG. An exception was Lemna minor (Araceae), which yielded no fucosylated oligosaccharides and had both XXXG and XXGn core motifs. Except for the Arecales (palms) and the Dasypogonaceae, which had fucogalactoxyloglucans, the xyloglucans of the commelinid monocotyledons were structurally different. The Zingiberales and Commelinales had xyloglucans with both XXGn and XXXG core motifs; small proportions of XXFG units, but no XLFG units, were present. In the Poales, the Poaceae had xyloglucans with a XXGn core motif and no fucosylated units. In the other Poales families, some had both XXXG and XXGn core motifs, others had only XXXG; XXFG units were present, but XLFG units were not.

Hide Abstract
Publication
Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants.

Schröder, R., Wegrzyn, T. F., Bolitho, K. M. & Redgwell, R. J. (2004). Planta, 219(4), 590-600.

Mannan transglycosylase is a novel cell wall enzyme activity acting on mannan-based plant polysaccharides in primary cell walls of monocotyledons and dicotyledons. The enzyme activity was detected by its ability to transfer galactoglucomannan (GGM) polysaccharides to tritium-labelled GGM-derived oligosaccharides generating tritium-labelled GGM polysaccharides. Mannan transglycosylase was found in a range of plant species and tissues. High levels of the enzyme activity were present in flowers of some kiwifruit (Actinidia) species and in ripe tomato (Solanum lycopersicum L.) fruit. Low levels were detected in mature green tomato fruit and activity increased during tomato fruit ripening up to the red ripe stage. Essentially all activity was found in the tomato skin and outermost 2 mm of tissue. Mannan transglycosylase activity in tomato skin and outer pericarp is specific for mannan-based plant polysaccharides, including GGM, galactomannan, glucomannan and mannan. The exact structural requirements for valid acceptors remain to be defined. Nevertheless, a mannose residue at the second position of the sugar chain and the absence of a galactose substituent on the fourth residue (counting from the non-reducing end) appear to be minimal requirements. Mannan-based polysaccharides in the plant cell wall may have a role analogous to that of xyloglucans, introducing flexibility and forming growth-restraining networks with cellulose. Thus mannan transglycosylase and xyloglucan endotransglycosylase, the only other known transglycosylase activity in plant cell walls, may both be involved in remodelling and refining the cellulose framework in developmental processes throughout the life of a plant.

Hide Abstract
Publication
Structural and Thermodynamic Dissection of Specific Mannan Recognition by a Carbohydrate Binding Module, TmCBM27.

Boraston, A. B., Revett, T. J., Boraston, C. M., Nurizzo, D. & Davies, G. J. (2003). Structure, 11(6), 665-675.

The C-terminal 176 amino acids of a Thermotoga maritima mannanase (Man5) constitute a carbohydrate binding module (CBM) that has been classified into CBM family 27. The isolated CBM27 domain, named TmCBM27, binds tightly (Kas 105–106, M-1) to β-1,4-mannooligosaccharides, carob galactomannan, and konjac glucomannan, but not to cellulose (insoluble and soluble) or soluble birchwood xylan. The X-ray crystal structures of native TmCBM27, a TmCBM27-mannohexaose complex, and a TmCBM27-63,64,-α-D-galactosyl-mannopentaose complex at 2.0 Å, 1.6 Å, and 1.35 Å, respectively, reveal the basis of TmCBM27's specificity for mannans. In particular, the latter complex, which is the first structure of a CBM in complex with a branched plant cell wall polysaccharide, illustrates how the architecture of the binding site can influence the recognition of naturally substituted polysaccharides.

Hide Abstract
Publication
Cloning and expression of a novel α-1, 3-arabinofuranosidase from Penicillium oxalicum sp. 68.

Hu, Y., Yan, X., Zhang, H., Liu, J., Luo, F., Cui, Y., Wang, W. & Zhou, Y. (2018). AMB Express, 8(1), 51

The discovery and creation of biocatalysts for plant biomass conversion are essential for industrial demand and scientific research of the plant cell wall. α-1,2 and α-1,3-L-arabinofuranosidases are debranching enzymes that catalyzing hydrolytic release of α-L-arabinofuranosyl residues in plant cell wall. Gene database analyses shows that GH62 family only contains specific α-L-arabinofuranosidases that play an important role in the degradation and structure of the plant cell wall. At present, there are only 22 enzymes in this group has been characterized. In this study, we cloned a novel α-1,3-arabinofuranosidase gene (poabf62a) belonging to glycoside hydrolase family 62 from Penicillium oxalicum sp. 68 and expressed it in Pichia pastoris. The molecular mass of recombinant PoAbf62A was estimated to be 32.9 kDa. Using p-nitrophenyl-α-L-arabinofuranoside (pNPαAbf) as substrate, purified PoAbf62A exhibited an optimal pH of 4.5 and temperature of 35°C. Results of methylation and 13C NMR analyses showed that PoAbf62A was exclusively α-1,3-arabinofuranosidase, specific for cleavage of α-1,3-arabinofuranosyl residues, and with the absence of activity towards α-1,2-arabinofuranose and α-1,5-arabinofuranose. Therefore, PoAbf62A exhibits high activity on sugar beet arabinan and wheat arabinoxylan, because their branched side chain are decorated with α-1,3-arabinofuranose. On the other hand, there is a lack of activity with linear-α-L-1,5-arabinan and xylan that only contained α-L-1,5-arabinofuranose or β-1,4-xylose. The α-1,3-arabinofuranosidase activity identified here provides a new biocatalytic tool to degrade hemicellulose and analyze the structure of plant cell walls.

Hide Abstract
Publication
Ruminiclostridium josui Abf62A-Axe6A: a tri-functional xylanolytic enzyme exhibiting α-L-arabinofuranosidase, endoxylanase, and acetylxylan esterase activities.

Wang, Y., Sakka, M., Yagi, H., Kaneko, S., Katsuzaki, H., Kunitake, E., Kimura, T. & Sakka, K. (2018). Enzyme and Microbial Technology, 117, 1-8.

Ruminiclostridium josui Abf62A-Axe6A is a modular enzyme comprising (in order from the N-terminus): an N-terminal signal peptide, a glycosidehydrolase family 62 (GH62) catalytic module, a family 6 carbohydratebinding module (CBM6), a dockerin module and an additional carbohydrate esterase family 6 catalytic module (CE6). In this study, three Abf62A-Axe6A derivatives were constructed, overexpressed in Escherichia coli, purified, and biochemically characterized: RjAbf62A-Axe6A, containing all four modules but lacking the signal peptide; RjAbf62A-CBM6, containing the GH62 and CBM6 modules; and RjAxe6A, containing only CE6. RjAbf62A-Axe6A was highly active toward arabinoxylan and moderately active toward sugar beet arabinan, and released mainly arabinose. Analysis of the arabinoxylooligosaccharide hydrolysis products revealed that RjAbf62A-Axe6A released α-1,2- and α-1,3-linked arabinofuranose from both singly and doubly substituted xylosyl residues. Furthermore, RjAbf62A-Axe6A exhibited a weak activity toward linear 1,5-α-L arabinan and arabinooligosaccharides, indicating that it is capable of cleaving α-1,5-linkage. Surprisingly, RjAbf62A-Axe6A also demonstrated an endoxylanase activity toward birchwood and beechwood xylans and xylooligosaccharides. Although RjAbf62A-CBM6 exhibited a similar substrate specificity to RjAbf62A-Axe6A, RjAbf62A-CBM6 showed lower activities toward soluble arabinoxylans, birchwood and beechwood xylans and arabinoxylooligosaccharides but not toward insoluble arabinoxylan. RjAbf62A-Axe6A is the first reported GH62 enzyme with α-L-arabinofuranosidase and endoxylanase activities. Although both RjAbf62A-Axe6A and RjAxe6A had acetylxylan esterase activities, RjAbf62A-Axe6 exhibited a higher activity toward insoluble wheat arabinoxylan compared with RjAxe6.

Hide Abstract
Publication
Enzymatic pectic oligosaccharides (POS) production from sugar beet pulp using response surface methodology.

Babbar, N., Dejonghe, W., Sforza, S. & Elst, K. (2017). Journal of Food Science and Technology, 1-9.

Pectic oligosaccharides (POS) have been indicated as novel candidate prebiotics. Traditionally, POS are produced from pectin-rich by-products using a two-step process involving extraction of the pectin, followed by its hydrolysis into POS. A one-step approach, in which the POS is directly produced from the raw material, might provide a more efficient alternative. Thus, the main aim of this paper was to investigate a one-step enzymatic hydrolysis approach to directly produce POS from sugar beet pulp (SBP). The POS yield was investigated as a function of the process parameters, as well as raw material characteristics. A statistically-based response surface methodology, using a central composite design was applied, to investigate the individual as well as the combined influences of the diverse parameters. The model was confirmed by a validation experiment, carried out at 135 g/l substrate concentration, 0.75 FPU/g SBP enzyme concentration, 0.8 mm particle size and 3 h hydrolysis time. Under these conditions, a POS-rich hydrolysate was obtained, containing rhamnose, arabinose, galactose, xylose and galacturonic acid, at 0.9, 15.2, 5.1, 1.4, and 13.2 g/l, respectively, enzymes were added each at 20 FPU/g dry matter (DM).

Hide Abstract
Publication
Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC.

Wu, D. T., Cheong, K. L., Deng, Y., Lin, P. C., Wei, F., Lv, X. J., Long, Z. R., Zhoa, J., Ma, S. C. & Li, S. P. (2015). Carbohydrate polymers, 134, 12-19.

Water-soluble polysaccharides from 51 batches of fruits of L. barbarum (wolfberry) in China were investigated and compared using saccharide mapping, partial acid hydrolysis, single and composite enzymatic digestion, followed by polysaccharide analysis by using carbohydrate gel electrophoresis (PACE) analysis and high performance thin layer chromatography (HPTLC) analysis, respectively. Results showed that multiple PACE and HPTLC fingerprints of partial acid and enzymatic hydrolysates of polysaccharides from L. barbarum in China were similar, respectively. In addition, results indicated that β-1,3-glucosidic, α-1,4-galactosiduronic and α-1,5-arabinosidic linkages existed in polysaccharides from L. barbarum collected in China, and the similarity of polysaccharides in L. barbarum collected from different regions of China was pretty high, which are helpful for the improvement of the performance of polysaccharides from L. barbarum in functional/health foods area. Furthermore, polysaccharides from Panax notoginseng, Angelica sinensis, and Astragalus membranaceus var. mongholicus were successfully distinguished from those of L. barbarum based on their PACE fingerprints. These results were beneficial to improve the quality control of polysaccharides from L. barabrum and their products, which suggested that saccharide mapping based on PACE and HPTLC analysis could be a routine approach for quality control of polysaccharides.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Glucomannan Assay Kit K-GLUM
Glucomannan Assay Kit
€276.00
Total Starch Assay Kit (AA/AMG) K-TSTA
Total Starch Assay Kit (AA/AMG)
€155.00
Mannan 1-4-beta-D-Mannan P-MANCB
Mannan (1,4-β-D-Mannan)
€156.00
Mannotriose O-MTR
Mannotriose
€155.00
Mannobiose O-MBI
Mannobiose
€155.00
1,4-beta-D-Glucosyl-D-Mannose plus 1,4-beta-D-Mannobiose O-GMMBI
1,4-β-D-Glucosyl-D-Mannose plus 1,4-β-D-Mannobiose
€152.00
1-4-beta-D-Glucosyl-D-Mannose O-GM
1,4-β-D-Glucosyl-D-Mannose
€151.00
D-Mannose D-Fructose D-Glucose Assay kit K-MANGL
D-Mannose/D-Fructose/D-Glucose Assay kit
€202.00