The product has been successfully added to your shopping list.

Glucomannan (Konjac; Low Viscosity)

Glucomannan Konjac Low Viscosity P-GLCML
Product code: P-GLCML
€187.00

4 g

Prices exclude VAT

Available for shipping

North American customers click here
Content: 4 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 2 years under recommended storage conditions
CAS Number: 11078-31-2
Source: Konjac tubers
Purity: > 98%
Viscosity: ~ 10 cSt
Monosaccharides (%): Mannose: Glucose = 60: 40
Main Chain Glycosidic Linkage: β-1,4
Substrate For (Enzyme): endo-1,4-β-Glucanase, endo-Cellulase

High purity Glucomannan (Konjac; Low Viscosity) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Browse all available polysaccharides.

Documents
Certificate of Analysis
Safety Data Sheet
Data Sheet
Publications
Publication

Calcium-and Magnesium-Enriched Organic Fertilizer and Plant Growth-Promoting Rhizobacteria Affect Soil Nutrient Availability, Plant Nutrient Uptake, and Secondary Metabolite Production in Aloe vera (Aloe barbadensis Miller) Grown under Field Conditions.

Nikolaou, C. N., Chatziartemiou, A., Tsiknia, M., Karyda, A. G., Ehaliotis, C. & Gasparatos, D. (2023). Agronomy, 13(2), 482.

This work investigates the effects of an organic fertilizer enriched in Ca and Mg and two bacterial inoculants, applied alone and in combination, on soil fertility, plant growth, nutrition, and production of secondary metabolites, namely, acemannan and total phenolic compounds (TPCs), by Aloe vera (Aloe barbadensis Miller), under field cultivation. The first inoculum consisted of five native bacterial strains (Pseudomonas sp., Enterobacter sp., and three strains of Pantoea sp.), characterized in vitro as putative plant growth promoters, isolated from local organic farming fields of Aloe vera. The second inoculant was a commercial product (BACTILIS-S and HUMOFERT) and consisted of three Bacillus species: B. pumilus, B. amyloliquefaciens, and B. subtilis. The organic fertilizer (HUMO-CAL M-8O) was a mixture of humic and fulvic acids, with an additional CaCO3 (40% w/w) and MgO (4% w/w). The most significant increase in the content of acemannan and TPCs was detected under single application of the organic fertilizer, which was linked to enhanced concentration of Mg and Ca in the leaf gel. The concentration of acemannan tended to be increased with the combined application of the organic fertilizer and microbial inoculants. TPCs were significantly increased in both single and combined treatments, seemingly related to Fe concentration in the leaf rinds.

Hide Abstract
Publication

The secretome of Agaricus bisporus: temporal dynamics of plant polysaccharides and lignin degradation.

Duran, K., Magnin, J., America, A. H., Peng, M., Hilgers, R., de Vries, R. P., Baars, J. J. P., Berkel, W. J. H., Kuyper, T. W. & Kabel, M. A. (2023). iScience, 26(7): 107087.

Despite substantial lignocellulose conversion during mycelial growth, previous transcriptome and proteome studies have not yet revealed how secretomes from the edible mushroom Agaricus bisporus develop and whether they modify lignin models in vitro. To clarify these aspects, A. bisporus secretomes collected throughout a 15-day industrial substrate production and from axenic lab-cultures were subjected to proteomics, and tested on polysaccharides and lignin models. Secretomes (day 6-15) comprised A. bisporus endo-acting and substituent-removing glycoside hydrolases, whereas β-xylosidase and glucosidase activities gradually decreased. Laccases appeared from day 6 onwards. From day 10 onwards, many oxidoreductases were found, with numerous multicopper oxidases (MCO), aryl alcohol oxidases (AAO), glyoxal oxidases (GLOX), a manganese peroxidase (MnP), and unspecific peroxygenases (UPO). Secretomes modified dimeric lignin models, thereby catalyzing syringylglycerol-β-guaiacyl ether (SBG) cleavage, guaiacylglycerol-β-guaiacyl ether (GBG) polymerization, and non-phenolic veratrylglycerol-β-guaiacyl ether (VBG) oxidation. We explored A. bisporus secretomes and insights obtained can help to better understand biomass valorization.

Hide Abstract
Publication

Zobellia alginoliquefaciens sp. nov., a new flavobacteria isolated from the epibiota of the brown alga Ericaria zosteroides (C. Agardh) Molinari & Guiry 2020.

Barbeyron, T., Le Duff, N., Duchaud, E. & Thomas, F. (2023). BioRxiv, 2023-03.

Strain LLG6346-3.1T, isolated from the thallus of the brown alga Ericaria zosteroides collected in Mediterranean Sea near Bastia in Corsica, France, was characterized using a polyphasic method. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, motile by gliding, rod-shaped and grew optimally at 30-33°C, at pH 8-8.5 and with 4-5 % NaCl. Strain LLG6346-3.1T used the seaweed polysaccharide alginic acid as sole carbon source which was vigorously liquefied. Phylogenetic analyses showed that the bacterium is affiliated to the genus Zobellia (family Flavobacteriaceae, class Flavobacteriia). Strain LLG6346-3.1T exhibited 16S rRNA gene sequence similarity values of 98.5 and 98.3 % to the type strains of Zobellia russellii and Zobellia roscoffensis respectively, and of 97.4-98.2 % to other species of the genus Zobellia. The DNA G+C content of strain LLG6346-3.1T was determined to be 38.28 mol%. Digital DNA-DNA hybridization predictions by the ANI and GGDC methods between strain LLG6346-3.1T and other members of the genus Zobellia showed values of 76-88 %, and below 37 %, respectively. The phenotypic, phylogenetic and genomic analyses show that strain LLG6346-3.1T is distinct from species of the genus Zobellia with validly published names and that it represents a novel species of the genus Zobellia, for which the name Zobellia alginoliquefaciens sp. nov. is proposed. The type strain is LLG6346-3.1T (RCC 7657T = LLG 32918T).

Hide Abstract
Publication

Insight into CAZymes of Alicyclobacillus mali FL18: Characterization of a New Multifunctional GH9 Enzyme.

Carbonaro, M., Aulitto, M., Gallo, G., Contursi, P., Limauro, D. & Fiorentino, G. (2023). International Journal of Molecular Sciences, 24(1), 243.

In the bio-based era, cellulolytic and hemicellulolytic enzymes are biocatalysts used in many industrial processes, playing a key role in the conversion of recalcitrant lignocellulosic waste biomasses. In this context, many thermophilic microorganisms are considered as convenient sources of carbohydrate-active enzymes (CAZymes). In this work, a functional genomic annotation of Alicyclobacillus mali FL18, a recently discovered thermo-acidophilic microorganism, showed a wide reservoir of putative CAZymes. Among them, a novel enzyme belonging to the family 9 of glycosyl hydrolases (GHs), named AmCel9, was identified; in-depth in silico analyses highlighted that AmCel9 shares general features with other GH9 members. The synthetic gene was expressed in Escherichia coli and the recombinant protein was purified and characterized. The monomeric enzyme has an optimal catalytic activity at pH 6.0 and has comparable activity at temperatures ranging from 40°C to 70°C. It also has a broad substrate specificity, a typical behavior of multifunctional cellulases; the best activity is displayed on β-1,4 linked glucans. Very interestingly, AmCel9 also hydrolyses filter paper and microcrystalline cellulose. This work gives new insights into the properties of a new thermophilic multifunctional GH9 enzyme, that looks a promising biocatalyst for the deconstruction of lignocellulose.

Hide Abstract
Publication

Cross-Feeding and Enzymatic Catabolism for Mannan-Oligosaccharide Utilization by the Butyrate-Producing Gut Bacterium Roseburia hominis A2-183.

Bhattacharya, A., Majtorp, L., Birgersson, S., Wiemann, M., Sreenivas, K., Verbrugghe, P., Van Aken, O., Van Niel, E. W. J. & Stålbrand, H. (2022). Microorganisms, 10(12), 2496.

β-Mannan is abundant in the human diet and in hemicellulose derived from softwood. Linear or galactose-substituted β-mannan-oligosaccharides (MOS/GMOSs) derived from β-mannan are considered emerging prebiotics that could stimulate health-associated gut microbiota. However, the underlying mechanisms are not yet resolved. Therefore, this study investigated the cross-feeding and metabolic interactions between Bifidobacterium adolescentis ATCC 15703, an acetate producer, and Roseburia hominis A2-183 DSMZ 16839, a butyrate producer, during utilization of MOS/GMOSs. Cocultivation studies suggest that both strains coexist due to differential MOS/GMOS utilization, along with the cross-feeding of acetate from B. adolescentis E194a to R. hominis A2-183. The data suggest that R. hominis A2-183 efficiently utilizes MOS/GMOS in mono- and cocultivation. Notably, we observed the transcriptional upregulation of certain genes within a dedicated MOS/GMOS utilization locus (RhMosUL), and an exo-oligomannosidase (RhMan113A) gene located distally in the R. hominis A2-183 genome. Significantly, biochemical analysis of β-1,4 mannan-oligosaccharide phosphorylase (RhMOP130A), α-galactosidase (RhGal36A), and exo-oligomannosidase (RhMan113A) suggested their potential synergistic role in the initial utilization of MOS/GMOSs. Thus, our results enhance the understanding of MOS/GMOS utilization by potential health-promoting human gut microbiota and highlight the role of cross-feeding and metabolic interactions between two secondary mannan degraders inhabiting the same ecological niche in the gut.

Hide Abstract
Publication

Duplication of horizontally acquired GH5_2 enzymes played a central role in the evolution of longhorned beetles.

Shin, N. R., Doucet, D. & Pauchet, Y. (2022). Molecular Biology and Evolution, 39(6), msac128.

The rise of functional diversity through gene duplication contributed to the adaption of organisms to various environments. Here we investigate the evolution of putative cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2) in the Cerambycidae (longhorned beetles), a megadiverse assemblage of mostly xylophagous beetles. Cerambycidae originally acquired GH5_2 from a bacterial donor through horizontal gene transfer (HGT), and extant species harbor multiple copies that arose from gene duplication. We ask how these digestive enzymes contributed to the ability of these beetles to feed on wood. We analyzed 113 GH5_2, including the functional characterization of 52 of them, derived from 25 species covering most subfamilies of Cerambycidae. Ancestral gene duplications led to five well-defined groups with distinct substrate specificity, allowing these beetles to break down, in addition to cellulose, polysaccharides that are abundant in plant cell walls (PCWs), namely, xyloglucan, xylan, and mannans. Resurrecting the ancestral enzyme originally acquired by HGT, we show it was a cellulase that was able to break down glucomannan and xylan. Finally, recent gene duplications further expanded the catalytic repertoire of cerambycid GH5_2, giving rise to enzymes that favor transglycosylation over hydrolysis. We suggest that HGT and gene duplication, which shaped the evolution of GH5_2, played a central role in the ability of cerambycid beetles to use a PCW-rich diet and may have contributed to their successful radiation.

Hide Abstract
Publication

Conservation of endo-glucanase 16 (EG16) activity across highly divergent plant lineages.

Behar, H., Tamura, K., Wagner, E. R., Cosgrove, D. J., & Brumer, H. (2021). Biochemical Journal, 478(16), 3063-3078.

Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual β-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.

Hide Abstract
Publication

Identification and Biochemical Characterization of Major β-Mannanase in Talaromyces cellulolyticus Mannanolytic System.

Uechi, K., Watanabe, M., Fujii, T., Kamachi, S. & Inoue, H. (2020). Applied Biochemistry and Biotechnology, 132.

Talaromyces cellulolyticus is a promising fungus for providing a cellulase preparation suitable for the hydrolysis of lignocellulosic material, although its mannan-degrading activities are insufficient. In the present study, three core mannanolytic enzymes, including glycosyl hydrolase family 5-7 (GH5-7) β-mannanase (Man5A), GH27 α-galactosidase, and GH2 β-mannosidase, were purified from a culture supernatant of T. cellulolyticus grown with glucomannan, and the corresponding genes were identified based on their genomic sequences. Transcriptional analysis revealed that these genes were specifically induced by glucomannan. Two types of Man5A products, Man5A1 and Man5A2, were found as major proteins in the mannanolytic system. Man5A1 was devoid of a family 1 carbohydrate-binding module (CBM1) at the N-terminus, whereas Man5A2 was devoid of both CBM1 and Ser/Thr-rich linker region. The physicochemical and catalytic properties of both Man5A1 and Man5A2 were identical to those of recombinant Man5A (rMan5A) possessing CBM1, except for the cellulose-binding ability. Man5A CBM1 had little effect on mannan hydrolysis of pretreated Hinoki cypress. The results suggest that an improvement in Man5A CBM1 along with the augmentation of identified mannanolytic enzyme components would aid in efficient hydrolysis of softwood using T. cellulolyticus cellulase preparation.

Hide Abstract
Publication

Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale.

Marcuello, C., Foulon, L., Chabbert, B., Aguié-Béghin, V. & Molinari, M. (2020). International Journal of Biological Macromolecules, 147, 1064-1075.

Lignocellulosic biomass is receiving growing interest as a renewable source of biofuels, chemicals and materials. Lignocellulosic polymers and cellulose nanocrystals (CNCs) present high added-value potential in the nanocomposite field, but some issues have to be solved before large-scale applications. Among them, the interaction between polymers at the nanoscale and the effect of the external parameters on the mechanical properties have to be more precisely investigated. The present study aims at evaluating how the relative humidity affects the reduced Young’s modulus of lignocellulosic films prepared with crystalline cellulose, glucomannan, xylan and lignin and how relative humidity changes their nanoscale adhesion properties with CNCs. Using atomic force microscopy and force volume experiments with CNC-functionalized levers, increasing the relative humidity is shown to decrease the Young’s modulus values of the different films and promote their adhesion forces with CNCs. In particular, CNCs more strongly interact with glucomannan and lignin than xylan, and in the case of lignin, the oxidation of the film promotes strong variations in the adhesion force. Such results allow to better understand the lignocellulosic film properties at the nanoscale, which should lead to an improvement in the production of new highly added-value composites.

Hide Abstract
Publication

Adaptation of syntenic xyloglucan utilization loci of human gut Bacteroidetes to polysaccharide side chain diversity.

Déjean, G., Tauzin, A. S., Bennett, S. W., Creagh, A. L. & Brumer, H. (2019). Applied and Environmental Microbiology, 85(20), e01491-19.

Genome sequencing has revealed substantial variation in the predicted abilities of individual species within animal gut microbiota to metabolize the complex carbohydrates comprising dietary fiber. At the same time, a currently limited body of functional studies precludes a richer understanding of how dietary glycan structures affect the gut microbiota composition and community dynamics. Here, using biochemical and biophysical techniques, we identified and characterized differences among recombinant proteins from syntenic xyloglucan utilization loci (XyGUL) of three Bacteroides and one Dysgonomona species from the human gut, which drive substrate specificity and access to distinct polysaccharide side chains. Enzymology of four syntenic glycoside hydrolase family 5 subfamily 4 (GH5_4) endo-xyloglucanases revealed surprising differences in xyloglucan (XyG) backbone cleavage specificity, including the ability of some homologs to hydrolyze congested branched positions. Further, differences in the complement of GH43 alpha-L-arabinofuranosidases and GH95 alpha-L-fucosidases among syntenic XyGUL confer distinct abilities to fully saccharify plant species-specific arabinogalactoxyloglucan and/or fucogalactoxyloglucan. Finally, characterization of highly sequence-divergent cell surface glycan-binding proteins (SGBPs) across syntenic XyGUL revealed a novel group of XyG oligosaccharide-specific SGBPs encoded within select Bacteroides.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
beta-Glucan Barley Medium Viscosity P-BGBM
β-Glucan (Barley; Medium Viscosity)
€351.00
CM-Pachyman P-CMPAC
CM-Pachyman
€0.00
Carboxymethyl Cellulose 4M P-CMC4M
Carboxymethyl Cellulose 4M
€0.00
beta-Glucan Oat Medium Viscosity P-BGOM
β-Glucan (Oat; Medium Viscosity)
€336.00
beta-Glucan Barley High Viscosity P-BGBH
β-Glucan (Barley; High Viscosity)
€372.00
beta-Glucan Barley Low Viscosity P-BGBL
β-Glucan (Barley; Low Viscosity)
€336.00