The product has been successfully added to your shopping list.

AZCL-Barley β-Glucan

AZCL-Barley beta-Glucan I-AZBGL
Product code: I-AZBGL
€0.00

3 g

Prices exclude VAT

This product has been discontinued

Content: 3 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 7 years under recommended storage conditions
Substrate For (Enzyme): endo-Cellulase, β-Glucanase/Lichenase
Assay Format: Spectrophotometer (Semi-quantitative), Petri-dish (Qualitative)
Detection Method: Absorbance
Wavelength (nm): 590

This product has been discontinued (read more).

High purity dyed and crosslinked insoluble AZCL-Barley β-Glucan for identification of enzyme activities in research, microbiological enzyme assays and in vitro diagnostic analysis.

Substrate for the assay of malt β-glucanase, lichenase and cellulases.

Also offers other chromogenic substrate products.

Documents
Certificate of Analysis
Safety Data Sheet
FAQs Application Note Assay Protocol
Publications
Megazyme publication
Assay of malt β-glucanase using azo-barley glucan: an improved precipitant.

McCleary, B. V. & Shameer, I. (1987). Journal of the Institute of Brewing, 93(2), 87-90.

A procedure recently described for the assay of malt β-glucanase, which employs a dye-labelled and chemically-modified barley β-glucan substrate, has been improved by changing the precipitant solution used to terminate the reaction. The new precipitant solution contains 0•4% (w/v) zinc acetate and 4% (w/v) sodium acetate dissolved in 80% (v/v) aqueous methyl cellosolve. With this precipitant the procedure can be directly applied to the assay of cellulase activity, and with minor modification, to the assay of lichenase activity.

Hide Abstract
Megazyme publication
A soluble chromogenic substrate for the assay of (1→3)(1→4)-β-D-glucanase (lichenase).

McCleary, B. V. (1986). Carbohydrate Polymers, 6(4), 307-318.

A simple procedure for the assay of (1→3)(1→4)-β-D-glucanase (lichenase) has been developed. This assay employs as substrate barley (1→3)(1→4)-β-D-glucan dyed with Remazolbrilliant Blue R and chemically modified with carboxymethyl groups to increase solubility. Preparation of this substrate required the development of an improved procedure for the extraction and purification of barley β-glucan. Assays based on the use of the described chromogenic substrate at pH 6•5 are sensitive and specific for enzymes active on barley β-glucan.

Hide Abstract
Megazyme publication

Problems caused by barley beta-glucans in the brewing industry.

McCleary, B. V. (1986). Chemistry in Australia, 53, 306-308.

Brewing, the oldest application of bio-technology is now a mix of trade art and modern science. This article describes new applications of enzyme chemistry to trouble-shooting in beer production.

Hide Abstract
Megazyme publication

Measurement of malt beta-glucanase.

McCleary, B. V. (1986). Proceedings of the 19th Convention of the Institute of Brewing (Aust. and N.Z. section), 181-187.

A Procedure has been developed for the assay of malt β-glucanase [a(1→3)(1→4)-β-D-glucanase] which employs as substrate, barley β-glucan dyed with Remazolbrilliant Blue and chemically modified with carboxymethyl groups to increase solubility. The described assay procedure together with a modified extraction format allows analysis of up to ten malt samples in less than 80 min. Also, the procedure is specific for enzymes active on barley β-glucan, is accurate and reliable, and can be readily applied to the analysis of β-glucanase in malt, green malt and wort.

Hide Abstract
Megazyme publication
New chromogenic substrates for the assay of alpha-amylase and (1→4)-β-D-glucanase.

McCleary, B. V. (1980). Carbohydrate Research, 86(1), 97-104.

New chromogenic substrates have been developed for the quantitative assay of alpha-amylase and (1→4)-β-D-glucanase. These were prepared by chemically modifying amylose or cellulose before dyeing, to increase solubility. After dyeing, the substrates were either soluble or could be readily dispersed to form fine, gelatinous suspensions. Assays based on the use of these substrates are sensitive and highly specific for either alpha-amylase or (1→4)-β-D-glucanase. The method of preparation can also be applied to obtain substrates for other endo-hydrolases.

Hide Abstract
Publication
Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils.

Pitt, J. I., Lange, L., Lacey, A. E., Vuong, D., Midgley, D. J., Greenfield, P., Bradbury, M. I., Lacey, E., Busk, P. K., Pilgaard, B., Chooi, Y. H. & Piggott, A. M. (2017). PloS One, 12(4), e0170254.

Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia. It is phylogenetically and phenotypically related most closely to A. leporis States and M. Chr., but differs in conidial colour, other minor features and particularly in metabolite profile. When cultivated on rice as an optimal substrate, A. hancockii produced an extensive array of 69 secondary metabolites. Eleven of the 15 most abundant secondary metabolites, constituting 90% of the total area under the curve of the HPLC trace of the crude extract, were novel. The genome of A. hancockii, approximately 40 Mbp, was sequenced and mined for genes encoding carbohydrate degrading enzymes identified the presence of more than 370 genes in 114 gene clusters, demonstrating that A. hancockii has the capacity to degrade cellulose, hemicellulose, lignin, pectin, starch, chitin, cutin and fructan as nutrient sources. Like most Aspergillus species, A. hancockii exhibited a diverse secondary metabolite gene profile, encoding 26 polyketide synthase, 16 nonribosomal peptide synthase and 15 nonribosomal peptide synthase-like enzymes.

Hide Abstract
Publication
Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge.

Wilkens, C., Busk, P. K., Pilgaard, B., Zhang, W. J., Nielsen, K. L., Nielsen, P. H. & Lange, L. (2017). Biotechnology for Biofuels, 10(1), 158

Background: Improved carbohydrate-active enzymes (CAZymes) are needed to fulfill the goal of producing food, feed, fuel, chemicals, and materials from biomass. Little is known about how the diverse microbial communities in anaerobic digesters (ADs) metabolize carbohydrates or which CAZymes that are present, making the ADs a unique niche to look for CAZymes that can potentiate the enzyme blends currently used in industry. Results: Enzymatic assays showed that functional CAZymes were secreted into the AD environments in four full-scale mesophilic Danish ADs fed with primary and surplus sludge from municipal wastewater treatment plants. Metagenomes from the ADs were mined for CAZymes with Homology to Peptide Patterns (HotPep). 19,335 CAZymes were identified of which 30% showed 50% or lower identity to known proteins demonstrating that ADs make up a promising pool for discovery of novel CAZymes. A function was assigned to 54% of all CAZymes identified by HotPep. Many different α-glucan-acting CAZymes were identified in the four metagenomes, and the most abundant family was glycoside hydrolase family 13, which contains α-glucan-acting CAZymes. Cellulytic and xylanolytic CAZymes were also abundant in the four metagenomes. The cellulytic enzymes were limited almost to endoglucanases and β-glucosidases, which reflect the large amount of partly degraded cellulose in the sludge. No dockerin domains were identified suggesting that the cellulytic enzymes in the ADs studied operate independently. Of xylanolytic CAZymes, especially xylanases and β-xylosidase, but also a battery of accessory enzymes, were present in the four ADs. Conclusions: Our findings suggest that the ADs are a good place to look for novel plant biomass degrading and modifying enzymes that can potentiate biological processes and provide basis for production of a range of added-value products from biorefineries.

Hide Abstract
Publication
Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter.

Huang, Y., Yi, Z., Jin, Y., Huang, M., He, K., Liu, D., Luo, H., Zhao, D., He, H., Fang, Y. & Zhao, H. (2017). Frontiers in Microbiology, 8, 1747.

Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

Hide Abstract
Publication
Patterns of functional enzyme activity in fungus farming ambrosia beetles.

Licht, H. H. D. F. & Biedermann, P. H. W. (2012). Frontiers in Zoology, 9(1), 13.

Introduction: In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results: We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion: Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only in fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.

Hide Abstract
Publication
Evaluation of cellulolytic and hemicellulolytic abilities of fungi isolated from coffee residue and sawdust composts.

Eida, M. F., Nagaoka, T., Wasaki, J. & Kouno, K. (2011). Microbes Environ, 26(3), 220-227.

This study focused on the evaluation of cellulolytic and hemicellulolytic fungi isolated from sawdust compost (SDC) and coffee residue compost (CRC). To identify fungal isolates, the ITS region of fungal rRNA was amplified and sequenced. To evaluate enzyme production, isolates were inoculated onto wheat bran agar plates, and enzymes were extracted and tested for cellulase, xylanase, β-glucanase, mannanase, and protease activities using different azurine cross-linked (AZCL) substrates. In total, 18 isolates from SDC and 29 isolates from CRC were identified and evaluated. Four genera (Aspergillus, Galactomyces, Mucor, and Penicillium) and five genera (Aspergillus, Coniochaeta, Fusarium, Penicillium, and Trichoderma/Hypocrea) were dominant in SDC and CRC, respectively. Penicillium sp., Trichoderma sp., and Aspergillus sp. displayed high cellulolytic and hemicellulolytic activities, while Mucor isolates exhibited the highest β-glucanase and mannanase activities. The enzyme analyses revealed that Penicillium, Aspergillus, and Mucor isolates significantly contributed to the degradation of SDC, whereas Penicillium, Aspergillus, and Trichoderma isolates had a dominant role in the degradation of CRC. Notably, isolates SDCF5 (P. crustosum), CRCF6 (P. verruculosum), and CRCF2 and CRCF16 (T. harzianum/H. lixii) displayed high activity regarding cellulose and hemicellulose degradation, which indicates that these species could be beneficial for the improvement of biodegradation processes involving lignocellulosic materials.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Pachyman 1-3-beta-D-Glucan P-PACHY
Pachyman (1,3-β-D-Glucan)
€0.00
beta-Glucan MW Standards P-MWBGS
β-Glucan MW Standards
€504.00
beta-Glucan Yeast Alkali Soluble P-BGYST
β-Glucan (Yeast; Alkali Soluble)
€230.00
beta-Glucan Assay Kit Mixed Linkage K-BGLU BGLU
β-Glucan Assay Kit (Mixed Linkage)
€297.00
Enzymatic Yeast beta-Glucan Assay Kit K-EBHLG EBHLG
Enzymatic Yeast β-Glucan Assay Kit
€296.00
Carrez Clarification Kit K-CARREZ CARREZ
Carrez Clarification Kit
€86.00
Hydrogen Peroxide Assay Kit Megaplex Red K-MRH2O2 MRH2O2
Hydrogen Peroxide Assay Kit (Megaplex Red)
€328.00
Phytase Assay Kit K-PHYTASE PHYTASE
Phytase Assay Kit
€375.00