The product has been successfully added to your shopping list.

Cellazyme T Tablets

Play Training Video
Analysis of enzymes activity using carbohydrase tablet testing

To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Theory of endo-1, 4-Beta-D-Xylanase Assay Procedure
Chapter 2: Buffers & Reagents
Chapter 3: Assay Procedure
Product code: T-CTZ-200T



200 Tablets

Prices exclude VAT

Available for shipping

Content: 200 Tablets or 1,000 Tablets
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Solid
Stability: > 10 years under recommended storage conditions
Substrate For (Enzyme): endo-Cellulase, Xyloglucanase
Assay Format: Spectrophotometer
Detection Method: Absorbance
Wavelength (nm): 590
Reproducibility (%): ~ 5%

High purity dyed and crosslinked Cellazyme T tablets for the measurement of enzyme activity, for research, biochemical enzyme assays and in vitro diagnostic analysis. 

A unique substrate for the measurement of endo-cellulases active on highly branched and insoluble cellulosic substrates. Containing AZCL-Xyloglucan. Highly sensitive substrate.

Please note the video above shows the protocol for assay of endo-xylanase using xylazyme tablets. The procedure for the assays of endo-cellulase and xyloglucanase using Cellazyme T Tablets is equivalent to this.

More related CAZyme tablet test products available.

Certificate of Analysis
Safety Data Sheet
FAQs Booklet
Megazyme publication

Optimising the response.

Acamovic, T. & McCleary, B. V. (1996). Feed Mix, 4, 14-19.

A fine balance exists between enzyme activity and the adverse effects associated with feed processing. Accurate estimation of enzyme activity in the feed is a pre-requisite to optimising the response.

Hide Abstract
Megazyme publication
Comparison of endolytic hydrolases that depolymerise 1,4-β-D-mannan, 1,5-α-L-arabinan and 1,4-β-D-galactan.

McCleary, B. V. (1991). “Enzymes in Biomass Conversion”, (M. E. Himmel and G. F. Leatham, Eds.), ACS Symposium Series, 460, Chapter 34, pp. 437-449. American Chemical Society, Washington.

Hydrolysis of mannan-type polysaccharides by β-mannanase is dependent on substitution on and within the main-chain as well as the source of the β-mannanase employed. Characterisation of reaction products can be used to define the sub-site binding requirements of the enzymes as well as the fine-structures of the polysaccharides. Action of endo-arabinanase and endo-galactanase on arabinans and arabinogalactans is described. Specific assays for endo-arabinanase and arabinan (in fruit-juice concentrates) are reported.

Hide Abstract
Megazyme publication

Measurement of polysaccharide degrading enzymes using chromogenic and colorimetric substrates.

McCleary, B. V. (1991). Chemistry in Australia, September, 398-401.

Enzymic degradation of carbohydrates is of major significance in the industrial processing of cereals and fruits. In the production of beer, barley is germinated under well defined conditions (malting) to induce maximum enzyme synthesis with minimum respiration of reserve carbohydrates. The grains are dried and then extracted with water under controlled conditions. The amylolytic enzymes synthesized during malting, as well as those present in the original barley, convert the starch reserves to fermentable sugars. Other enzymes act on the cell wall polysaccharides, mixed-linkage β-glucan and arabinoxylan, reducing the viscosity and thus aiding filtration, and reducing the possibility of subsequent precipitation of polymeric material. In baking, β-amylase and α-amylase give controlled degradation of starch to fermentable sugars so as to sustain yeast growth and gas production. Excess quantities of α-amylase in the flour result in excessive degradation of starch during baking which in turn gives a sticky crumb texture and subsequent problems with bread slicing. Juice yield from fruit pulp is significantly improved if cell-wall degrading enzymes are used to destroy the three-dimensional structure and water binding capacity of the pectic polysaccharide components of the cell walls. Problems of routine and reliable assay of carbohydrate degrading enzymes in the presence of high levels of sugar compounds are experienced with such industrial process.

Hide Abstract
Megazyme publication
New chromogenic substrates for the assay of alpha-amylase and (1→4)-β-D-glucanase.

McCleary, B. V. (1980). Carbohydrate Research, 86(1), 97-104.

New chromogenic substrates have been developed for the quantitative assay of alpha-amylase and (1→4)-β-D-glucanase. These were prepared by chemically modifying amylose or cellulose before dyeing, to increase solubility. After dyeing, the substrates were either soluble or could be readily dispersed to form fine, gelatinous suspensions. Assays based on the use of these substrates are sensitive and highly specific for either alpha-amylase or (1→4)-β-D-glucanase. The method of preparation can also be applied to obtain substrates for other endo-hydrolases.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Xylazyme AX Tablets T-XAX
Xylazyme AX Tablets
Xylazyme Tablets T-XYZ
Xylazyme Tablets
Protazyme OL Tablets T-PROL
Protazyme OL Tablets
Protazyme AK Tablets T-PRAK
Protazyme AK Tablets
Mannazyme Tablets T-MNZ
Mannazyme Tablets
Galactazyme Tablets T-GLZ
Galactazyme Tablets
Limit-Dextrizyme Tablets T-LDZ
Limit-Dextrizyme Tablets
beta-Glucazyme Tablets T-BGZ
β-Glucazyme Tablets