1,000 Units
Prices exclude VAT
Available for shipping
Content: | 1,000 Units |
Shipping Temperature: | Ambient |
Storage Temperature: | 2-8oC |
Formulation: | In 3.2 M ammonium sulphate |
Physical Form: | Suspension |
Stability: | Minimum 1 year at 4oC. Check vial for details. |
Enzyme Activity: | Esterase |
EC Number: | 3.1.1.73 |
CAZy Family: | CE1 |
CAS Number: |
134712-49-5, 224306-54-1, 224306-55-2 |
Synonyms: | feruloyl esterase; 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase |
Source: | Rumen microorganism |
Molecular Weight: | 29,000 |
Concentration: | Supplied at ~ 400 U/mL |
Expression: | Recombinant from Rumen microorganism |
Specificity: | Catalyses the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates. |
Specific Activity: | ~ 30 U/mg (40oC, pH 6.5 on ethyl ferulate) |
Unit Definition: | One Unit of feruloyl esterase activity is defined as the amount of enzyme required to release one µmole of ferulic acid per minute from ethyl-ferulate (0.39 mM) in sodium phosphate buffer (100 mM), pH 6.5 at 40oC. |
Temperature Optima: | 40oC |
pH Optima: | 7 |
Application examples: | Applications established in biofuels, paper and pulp, food, nutrition, medical and pharmacological industries. |
High purity recombinant Feruloyl Esterase (rumen microorganism) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Find more Carbohydrate Active enZYmes products for various applications.
Hoffmann, P., Voges, M., Held, C. & Sadowski, G. (2013). Biophysical Chemistry, 173, 21-30.
The Gibbs energy of reaction (ΔRg) is the key quantity in the thermodynamic characterization of biological reactions. Its calculation requires precise standard Gibbs energy of reaction (ΔRg+) values. The value of ΔRg+ is usually determined by measuring the apparent (concentration-dependent) equilibrium constants K, e.g., the molality-based Km. However, the thermodynamically consistent determination of ΔRg+ requires the thermodynamic (activity-based) equilibrium constant Ka. These values (Km and Ka) are equal only if the ratio of the activity coefficients of the reactants to the activity coefficients of the products (Kγ) is equal to unity. In this work, the impact of Kγ on the estimation of Ka for biological reactions was investigated using methyl ferulate (MF) hydrolysis as a model reaction. The value of Kγ was experimentally determined from Km values that were measured at different reactant concentrations. Moreover, Kγ was independently predicted using the thermodynamic model ePC-SAFT. Both the experimentally determined and the predicted Kγ values indicate that this value cannot be assumed to be unity in the considered reaction. In fact, in the reaction conditions considered in this work, Kγ was shown to be in the range of 3 < Kγ < 6 for different reactant molalities (2 < mmol MF kg-1 < 10). The inclusion of Kγ and thus the use of the thermodynamically correct Ka value instead of Km lead to remarkable differences (almost 40%) in the determination of ΔRg+. Moreover, the new value for ΔRg+ increases the concentration window at which the reaction can thermodynamically occur. The influence of additives was also investigated both experimentally and theoretically. Both procedures consistently indicated that the addition of NaCl (0 to 1 mol kg-1 water) moderately decreased the value of Kγ, which means that the values of Km increase and that a higher amount of products is obtained as a result of the addition of salt. Additionally, Km was found to strongly depend on pH. A ten-fold increase in the Km values was observed in the pH range of 6 to 7; this increase corresponds to a change of more than 100% in the value of ΔRg+.
Hide Abstract