The product has been successfully added to your shopping list.

Rhamnogalacturonan (Soy Bean)

Rhamnogalacturonan Soy Bean P-RHAGN
Product code: P-RHAGN
€169.00

5 g

Prices exclude VAT

Available for shipping

North American customers click here
Content: 5 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 2 years under recommended storage conditions
CAS Number: 39280-21-2
Source: Soy bean fiber
Purity: > 97%
Monosaccharides (%): Galacturonic Acid: Neutral Sugars (Rhamnose: Fucose: Arabinose: Xylose: Galactose: Other Sugars) = 51: 49 (13: 21: 7: 28: 25: 3)
Treatment: Enzyme Hydrolysis
Substrate For (Enzyme): Rhamnogalacturonan Hydrolase, Rhamnogalacturonan Lyase

High purity Rhamnogalacturonan (Soy Bean) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Prepared from soy bean pectin. Potential substrate for the assay of rhamnogalacturonase.

Documents
Certificate of Analysis
Safety Data Sheet
FAQs Data Sheet
Publications
Publication

Carboxylic acid-catalyzed hydrolysis of rhamnogalacturonan in subcritical water media.

Ramirez, C. S. V., Temelli, F. & Saldaña, M. D. (2021). The Journal of Supercritical Fluids, 175, 105268.

Rhamnogalacturonans are branched pectic polysaccharides found in most plant cell walls and various agro-industrial residues. A commercial rhamnogalacturonan from soybean was selected as a model substrate to investigate the hydrolytic capacity of aqueous carboxylic acids (citric and malic acids) under subcritical water conditions as a green approach to biomass valorization. The hydrolysis was performed in batch mode at different temperatures (125-155°C) and reaction times (10-120 min) at constant pressure (100 bar). The HPSEC-RID and HILIC-ELSD analyses showed that aqueous carboxylic acids at 125°C/100 bar favored cleavage of neutral sugar residues from side chains of rhamnogalacturonan. At 135°C/100 bar/60 min, scission of rhamnogalacturonan backbone was evident where fractions of 4.7 kDa, 2.1 kDa, and <1.4 kDa were prevalent. Fractions with ≤2.1 kDa were comprised of 2-9 DP (degree of polymerization) oligogalacturonides and 5-10 DP galacto-oligosaccharides. A multi-step sequential hydrolysis mechanism was proposed for rhamnogalacturonan hydrolysis in subcritical water-carboxylic acid media.

Hide Abstract
Publication

Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B.

Kondo, T., Nishimura, Y., Matsuyama, K., Ishimaru, M., Nakazawa, M., Ueda, M. & Sakamoto, T. (2020). Applied Microbiology and Biotechnology, 104(3), 1135-1148.

Three recombinant β-galactosidases (BGALs; PcBGAL35A, PcBGAL35B, and PcGALX35C) belonging to the glycoside hydrolase (GH) family 35 derived from Penicillium chrysogenum 31B were expressed using Pichia pastoris and characterized. PcBGAL35A showed a unique substrate specificity that has not been reported so far. Based on the results of enzymological tests and 1H-nuclear magnetic resonance, PcBGAL35A was found to hydrolyze β-1,4-galactosyl residues linked to L-rhamnose in rhamnogalacturonan-I (RG-I) of pectin, as well as p-nitrophenyl-β-D-galactopyranoside and β-D-galactosyl oligosaccharides. PcBGAL35B was determined to be a common BGAL through molecular phylogenetic tree and substrate specificity analysis. PcGALX35C was found to have similar catalytic capacities for the β-1,4-galactosyl oligomer and polymer. Furthermore, PcGALX35C hydrolyzed RG-I-linked β-1,4-galactosyl oligosaccharide side chains with a degree of polymerization of 2 or higher in pectin. The amino acid sequence similarity of PcBGAL35A was approximately 30% with most GH35 BGALs, whose enzymatic properties have been characterized. The amino acid sequence of PcBGAL35B was approximately 80% identical to those of BGALs from Penicillium sp. The amino acid sequence of PcGALX35C was classified into the same phylogenetic group as PcBGAL35A. Pfam analysis revealed that the three BGALs had five domains including a catalytic domain. Our findings suggest that PcBGAL35A and PcGALX35C are enzymes involved in the degradation of galactosylated RG-I in pectin. The enzymes characterized in this study may be applied for products that require pectin processing and for the structural analysis of pectin.

Hide Abstract
Publication

Generation of structurally diverse pectin oligosaccharides having prebiotic attributes.

Singh, R. P., Prakash, S., Bhatia, R., Negi, M., Singh, J., Bishnoi, M. & Kondepudi, K. K. (2020).  Food Hydrocolloids, 105988.

Pectin oligosaccharides (POSs) are being recognized as potent prebiotics, given their structural complexity. Here, POSs were generated from apple pectin, rhamnogalacturonan-I and homogalacturonan with different degrees of esterification (high and low) using an optimized concentration of trifluoroacetic acid. The resulting POSs were analytically characterized, revealing that they contain linear and branched oligomers with a degree of polymerization (DP) up to 7. Biological activity of the generated POSs was determined in terms of immuno- and bacterio-modulatory perspectives. POSs significantly reduced the inflammatory response triggered by lipopolysaccharide and promoted the growth of several bacteria beneficial to the human gut. Overall results indicate that the degree of esterification of POSs is not a key element, but length of the DP and structure of POSs are responsible for biological outcomes. Owing to their biological activity, the POSs generated here can be considered as effective prebiotics and can be exploited for maintaining immune and microbial homeostasis in the human gut.

Hide Abstract
Publication
Crystal structure of exo‐rhamnogalacturonan lyase from Penicillium chrysogenum as a member of polysaccharide lyase family 26.

Kunishige, Y., Iwai, M., Nakazawa, M., Ueda, M., Tada, T., Nishimura, S. & Sakamoto, T. (2018). FEBS Letters, 592(8), 1378-1388.

Exo‐rhamnogalacturonan lyase from Penicillium chrysogenum 31B (PcRGLX) was recently classified as a member of polysaccharide lyase (PL) family 26 along with hypothetical proteins derived from various organisms. In this study, we determined the crystal structure of PcRGLX as the first structure of a member of this family. Based on the substrate‐binding orientation and substrate specificity, PcRGLX is an exo‐type PL that cleaves rhamnogalacturonan from the reducing end. Analysis of PcRGLX‐complex structures with reaction products indicate that the active site possesses an L‐shaped cleft that can accommodate galactosyl side chains, suggesting side‐chain‐bypassing activity in PcRGLX. Furthermore, we determined the residues critical for catalysis by analyzing the enzyme activities of inactive variants.

Hide Abstract
Publication
Characterisation of pectin-xylan complexes in tomato primary plant cell walls.

Broxterman, S. E. & Schols, H. A. (2018). Carbohydrate Polymers, 197, 269-276.

The primary plant cell wall is composed of a complex network of pectin, hemicellulose and cellulose. Potential interactions between these polysaccharides were studied for carrot, tomato and strawberry, with a focus on the role of pectin. The Chelating agent Unextractable Solids (ChUS), the residue after water- and EDTA extraction, was ball milled and subsequently water extracted. For tomato and strawberry, pectin and substantial amounts of hemicellulose were solubilised. Anion exchange chromatography (AEC) showed co-elution of pectin and acetylated glucuronoxylan in tomato, representing 18% of solubilised uronic acid and 48% of solubilised xylose by ball milling from ChUS. The existence of a covalently linked pectin-xylan complex was proposed since xylan co-precipitated with pectin under mild alkali conditions. It was proposed that pectin links with xylan through the RG-I region since degradation of HG did not alter AEC elution patterns for RG-I and xylan, suggesting RG-I - xylan interactions.

Hide Abstract
Publication
Protopectinase production by Paenibacillus polymyxa Z6 and its application in pectin extraction from apple pomace.

Zhang, J., Zhao, L., Gao, B., Wei, W., Wang, H. & Xie, J. (2018). Journal of Food Processing and Preservation, 42(1), e13367.

Paenibacillus polymyxa Z6 was screened as protopectinase (PPase) producing strain and its PPase activity was 44.4 U/mL. The factors influencing PPase production were identified by a two-level Plackett-Burman design with seven variables. The results indicated that Ca2+ concentration, fermentation time, and temperature were the most influential factors on the PPase production, which were applied in the Box-Behnken design. The predicted maximum PPase activity was 219 U/mL and the experimental maximum PPase activity was 221 U/mL, under the predicted optimum conditions, 170 mg/L Ca2+, 27°C, and 29 hr of fermentation. The present PPase was composed of both type-A PPase, polygalacturonase; and type-B PPase, arabinanase, and rhamnogalacturonase. Finally, the PPase was applied for the pectin extraction from apple pomace and achieved an average yield of 11.9% with properties like 8.5% moisture content, 1.6% ash content, 3.8 mPa.S viscosity, and pH 6.1 of 1% solution.

Hide Abstract
Publication
Quantification of food polysaccharide mixtures by 1H NMR.

Merkx, D. W., Westphal, Y., van Velzen, E. J., Thakoer, K. V., de Roo, N. & van Duynhoven, J. P. (2017). Carbohydrate Polymers, 179, 379-385.

Polysaccharides are food ingredients that critically determine rheological properties and shelf life. A qualitative and quantitative assessment on food-specific polysaccharide mixtures by 1H NMR is presented. The method is based on the identification of intact polysaccharides, combined with a quantitative analysis of their monosaccharide constituents. Identification of the polysaccharides is achieved by 1H NMR line shape fitting with pure compound spectra. The monomeric composition was determined using the Saeman hydrolysis procedure, followed by direct monosaccharide quantification by 1H NMR. In the quantification, both the monosaccharide degradation during hydrolysis, as well as a correction for the non-instantaneous polysaccharide dissolution were taken into account. These factors were particularly important for the quantification of pectins. The method showed overall good repeatability (RSDr = 4.1 ± 0.9%) and within-laboratory reproducibility (RSDR = 6.1 ± 1.4%) for various food polysaccharides. Polysaccharide mixtures were quantitatively resolved by a non-negative least squares estimation, using identified polysaccharides and their molar monosaccharide stoichiometry as prior knowledge. The accuracy and precision of the presented method make it applicable to a wide range of food polysaccharide mixtures with complex and overlapping 1H NMR spectra.

Hide Abstract
Publication
A novel GH43 α-L-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan.

Shinozaki, A., Kawakami, T., Hosokawa, S. & Sakamoto, T. (2014). Enzyme and Microbial Technology, 58, 80-86.

We previously described three α-L-arabinofuranosidases (ABFs) secreted by Penicillium chrysogenum 31B. Here, we purified a fourth ABF, termed PcABF43A, from the culture filtrate. The molecular mass of the enzyme was estimated to be 31 kDa. PcABF43A had the highest activity at 35°C and at around pH 5. The enzyme activity was strong on sugar beet L-arabinan but weak on debranched arabinan and arabinoxylan. Low molecular-mass substrates such as p-nitrophenyl α-L-arabinofuranoside, α-1,5-L-arabinooligosaccharides, and branched arabinotriose were highly resistant to the action of PcABF43A. 1H-NMR analysis revealed that PcABF43A hydrolyzed arabinosyl side chains linked to C-2 or C-3 of single-substituted arabinose residues in L-arabinan. Reports concerning enzymes specific for L-arabinan are quite limited. Pcabf43A cDNA encoding PcABF43A was isolated by in vitro cloning. The deduced amino acid sequence of the enzyme shows high similarities with the sequences of other fungal uncharacterized proteins. Semi-quantitative RT-PCR analysis indicated that the Pcabf43A gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was induced with pectic components such as L-arabinose, L-rhamnose, and D-galacturonic acid. Analysis of enzymatic characteristics of PcABF43A, GH51 ABF (AFQ1), and GH54 ABF (AFS1) from P. chrysogenum suggested that PcABF43A and AFS1 function as debranching enzymes and AFQ1 plays a role of saccharification in the degradation of L-arabinan by this fungus.

Hide Abstract
Publication
A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(4), 1933-1943.

Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this “tethered network” model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.

Hide Abstract
Publication
Enzymatic changes in pectic polysaccharides related to the beneficial effect of soaking on bean cooking time.

Martínez‐Manrique, E., Jacinto‐Hernández, C., Garza‐García, R., Campos, A., Moreno, E. & Bernal‐Lugo, I. (2011). Journal of the Science of Food and Agriculture, 91(13), 2394-2398.

Background: Cooking time decreases when beans are soaked first. However, the molecular basis of this decrease remains unclear. To determine the mechanisms involved, changes in both pectic polysaccharides and cell wall enzymes were monitored during soaking. Two cultivars and one breeding line were studied. Results: Soaking increased the activity of the cell wall enzymes rhamnogalacturonase, galactanase and polygalacturonase. Their activity in the cell wall was detected as changes in chemical composition of pectic polysaccharides. Rhamnose content decreased but galactose and uronic acid contents increased in the polysaccharides of soaked beans. A decrease in the average molecular weight of the pectin fraction was induced during soaking. The decrease in rhamnose and the polygalacturonase activity were associated (r = 0.933, P = 0.01, and r = 0.725, P = 0.01, respectively) with shorter cooking time after soaking. Conclusion: Pectic cell wall enzymes are responsible for the changes in rhamnogalacturonan I and polygalacturonan induced during soaking and constitute the biochemical factors that give bean cell walls new polysaccharide arrangements. Rhamnogalacturonan I is dispersed throughout the entire cell wall and interacts with cellulose and hemicellulose fibres, resulting in a higher rate of pectic polysaccharide thermosolubility and, therefore, a shorter cooking time.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed