The product has been successfully added to your shopping list.

L-Fucose Assay Kit

Product code: K-FUCOSE

100 assays (manual) / 1000 assays (microplate) / 1020 assays (auto-analyser)

Prices exclude VAT

Available for shipping

Content: 100 assays (manual) / 1000 assays (microplate) / 1020 assays (auto-analyser)
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: L-Fucose
Assay Format: Spectrophotometer, Microplate, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 340
Signal Response: Increase
Linear Range: 0.5 to 100 µg of L-fucose per assay
Limit of Detection: 0.68 mg/L
Reaction Time (min): ~ 10 min
Application examples: L-Fucose is present as the main component in fucoidan (a marine polysaccharide), foods, pharmaceuticals and other materials (e.g. biological samples, etc.).
Method recognition: Novel method

The L-Fucose test kit is a simple, rapid and reliable method, for the measurement and analysis of L-Fucose in plant extracts, biological samples and other materials. This kit can be used in the measurement of α-fucosidases that do not act on chromogenic substrates.

Note for Content: The number of manual tests per kit can be doubled if all volumes are halved.  This can be readily accommodated using the MegaQuantTM  Wave Spectrophotometer (D-MQWAVE).

See our full range of monosaccharide and disaccharide assay kits.

  • Very cost effective 
  • All reagents stable for > 2 years after preparation 
  • Only enzymatic kit available 
  • Simple format 
  • Rapid reaction time (~ 10 min) 
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included 
  • Suitable for manual, microplate and auto-analyser formats
Certificate of Analysis
Safety Data Sheet
FAQs Booklet Data Calculator
A highly regular fucan sulfate from the sea cucumber Stichopus horrens.

Ustyuzhanina, N. E., Bilan, M. I., Dmitrenok, A. S., Borodina, E. Y., Nifantiev, N. E. & Usov, A. I. (2018). Carbohydrate Research, 456, 5-9.

A highly regular fucan sulfate SHFS was isolated from the sea cucumber Stichopus horrens by extraction of the body walls in the presence of papain followed by ion-exchange and gel permeation chromatography. SHFS had MW of about 140 kDa and contained fucose and sulfate in the molar ratio of about 1:1. Chemical and NMR spectroscopic methods were applied for the structural characterization of the polysaccharide. SHFS was shown to have linear molecules built up of 3-linked α-L-fucopyranose 2-sulfate residues. Anticoagulant properties of SHFS were assessed in vitro in comparison with the LMW heparin (enoxaparin) and totally sulfated 3-linked α-L-fucan. SHFS was found to have the lowest activity, and hence, both sulfate groups at O-2 and O-4 of fucosyl units seem to be important for anticoagulant effect of sulfated homo-(1 → 3)-α-L-fucans.

Hide Abstract
Nutritional and bioactive compounds of commercialized algae powders used as food supplements.

Martínez–Hernández, G. B., Castillejo, N., Carrión–Monteagudo, M. D. M., Artés, F. & Artés-Hernández, F. (2017). Food Science and Technology International, 1082013217740000.

The main nutritional/bioactive compounds (protein; aminoacids, AA; fucose; minerals; vitamins B12 and C; and total phenolic content, TPC) of nine commercial algae powders, used as food supplements, were studied. Undaria pinnatifida showed the highest protein/aminoacid contents (51.6/54.4 g 100 g-1). Among brown macroalgae, Himanthalia elongate showed the highest fucose content (26.3 g kg-1) followed by Laminaria ochroleuca (22.5 g kg-1). Mineral contents of 15-24% were observed in the algae, being particularly excellent sources of iodine (69.0-472.0 mg kg-1). Porphyra spp. and Palmaria palmata showed the highest vitamin B12 contents (667-674 µg kg-1). Vitamin C ranged among 490.4-711.8 mg kg-1. H. elongate showed the highest total phenolic content (14.0 g kg-1). In conclusion, the studied algae are excellent sources of protein, AA, minerals, vitamin C and some of them presented particularly high vitamin B12 and fucose contents, which may have a potential use as food supplements.

Hide Abstract
Correlation of serum levo-fucose levels as a biomarker with tumor node metastasis staging in oral cancer patients.

Manchil, P. R. D., Joy, E. T., Kiran, M. S., Sherubin, J. E., Khan, M. F. & Aravind, B. S. (2016). Journal of Pharmacy & Bioallied Sciences, 8(Suppl 1), S147-S150.

Background: oral cancer is a result of disordered cellular behavior initiated by various stimuli which is characterized by the alteration of serum glycoproteins consisting of different monosaccharides. One of these is levo-fucose (L-fucose), a methyl pentose. Elevated levels of protein-bound fucose have been reported in various malignancies. Aim: The present study attempted to correlate levels of serum L-fucose as a biomarker with the various tumor node metastasis (TNM) stages of oral cancer. Methodology: The study was carried out on 90 subjects consisting of 30 healthy controls and 60 histopathologically proven oral squamous cell carcinoma (OSCC) cases. The serum fucose level estimation was done based on the method adopted by Winzler. Statistical analysis included independent sample's t-test, one-way ANOVA test, Karl–Pearson correlation test, and Tukey's HSD post hoc test to evaluate the significance and variability of values between groups. Results: Significant elevation in serum fucose levels was noticed among OSCC patients when compared with the controls and a progressive ascent of L-fucose levels were noted as the stage of severity increased. Serum fucose levels were independent of histopathological grading, age, and sex. Conclusion: Serum L-fucose levels were increased in OSCC patients, and a positive correlation was observed between serum L-fucose levels and TNM staging of OSCC. Thus, serum L-fucose can be used as an effective diagnostic and prognostic biomarker in OSCC patients.

Hide Abstract
Characterization of an α-L-fucosidase from the periodontal pathogen Tannerella forsythia.

Megson, Z. A., Koerdt, A., Schuster, H., Ludwig, R., Janesch, B., Frey, A., Naylor, K., Wilson, I. B. H., Stafford, G. P., Messner, P. & Schäffer, C. (2015). Virulence, 6(3), 282-292.

The periodontal pathogen Tannerella forsythia expresses several glycosidases which are linked to specific growth requirements and are involved in the invasion of host tissues. α-L-Fucosyl residues are exposed on various host glycoconjugates and, thus, the α-L-fucosidases predicted in the T. forsythia ATCC 43037 genome could potentially serve roles in host-pathogen interactions. We describe the molecular cloning and characterization of the putative fucosidase TfFuc1 (encoded by the bfo_2737 = Tffuc1 gene), previously reported to be present in an outer membrane preparation. In terms of sequence, this 51-kDa protein is a member of the glycosyl hydrolase family GH29. Using an artificial substrate, p-nitrophenyl-α-fucose (KM 670 µM), the enzyme was determined to have a pH optimum of 9.0 and to be competitively inhibited by fucose and deoxyfuconojirimycin. TfFuc1 was shown here to be a unique α(1,2)-fucosidase that also possesses α(1,6) specificity on small unbranched substrates. It is active on mucin after sialidase-catalyzed removal of terminal sialic acid residues and also removes fucose from blood group H. Following knock-out of the Tffuc1 gene and analyzing biofilm formation and cell invasion/adhesion of the mutant in comparison to the wild-type, it is most likely that the enzyme does not act extracellularly. Biochemically interesting as the first fucosidase in T. forsythia to be characterized, the biological role of TfFuc1 may well be in the metabolism of short oligosaccharides in the periplasm, thereby indirectly contributing to the virulence of this organism. TfFuc1 is the first glycosyl hydrolase in the GH29 family reported to be a specific α(1,2)-fucosidase.

Hide Abstract
Cloning, characterization, and production of three α‐L‐fucosidases from Clostridium perfringens ATCC 13124.

Fan, S., Zhang, H., Chen, X., Lu, L., Xu, L. & Xiao, M. (2015). Journal of Basic Microbiology, 56(4), 347-357.

α-L-Fucosidases are key enzymes for the degradation of intestinal glycans by gut microbes. In this work, three putative α-L-fucosidases (Afc1, Afc2, and Afc3) genes from Clostridium perfringens ATCC 13124 were cloned and expressed in Escherichia coli. Afc1 had the α-L-fucosidase domain of glycoside hydrolase (GH) 29 family but showed no enzyme activity toward all the substrates examined. The putative acid/base residue of Afc1, Ser205, was replaced by a glutamic acid which is conserved in GH29-B α-L-fucosidases. However, the mutant Afc1-S205E still failed to show enzyme activity. Afc2 and Afc3 were determined to be 1,3-1,4-α-L-fucosidase of GH29-B subfamily and 1,2-α-L-fucosidase of GH95 family, respectively, and both of them could release fucose from porcine gastric mucin (PGM). When C. perfringens ATCC 13124 grew with the presence of PGM, the transcription of afc1 decreased slightly, while those of afc2 and afc3 increased to 2.2-fold and 1.4-fold, respectively, and the enzyme activities of Afc2 and Afc3 in the culture increased to 2.2-fold and 2.6-fold, respectively. These results suggest that Afc2 and Afc3 are involved in the degradation of intestinal fucosyl glycans by C. perfringens ATCC 13124.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Ethanol Assay Kit Liquid Ready Reagents Assay Kit K-ETOHLQR
Ethanol Assay Kit (Liquid Ready) Assay Kit
Histamine Assay Kit K-HISTA
Histamine Assay Kit
Glucuronoyl Esterase Assay Kit K-GEUX3
Glucuronoyl Esterase Assay Kit
Total Starch Assay Kit AA/AMG K-TSTA TSTA
Total Starch Assay Kit (AA/AMG)
Resistant Starch Assay Kit Rapid K-RAPRS RAPRS
Resistant Starch Assay Kit (Rapid)
Available Carbohydrates Assay Kit K-AVCHO AVCHO
Available Carbohydrates Assay Kit
endo-Xylanase Assay Kit XylX6 Method K-XylX6 XylX6
Xylanase Assay Kit (XylX6 Method)
L-Malic Acid Assay Kit Manual Format K-LMAL LMAL
L-Malic Acid Assay Kit (Manual Format)