The product has been successfully added to your shopping list.

Maltose/Sucrose/D-Glucose Assay Kit

Product code: K-MASUG
€198.00

100 assays (34 of each) per kit

Prices exclude VAT

Available for shipping

Content: 100 assays (34 of each) per kit
Shipping Temperature: Ambient
Storage Temperature: Short term stability: 2-8oC,
Long term stability: See individual component labels
Stability: > 2 years under recommended storage conditions
Analyte: D-Glucose, Maltose, Sucrose
Assay Format: Spectrophotometer
Detection Method: Absorbance
Wavelength (nm): 340
Signal Response: Increase
Linear Range: 4 to 80 µg of D-glucose, or maltose per assay (8 to 160 µg of sucrose per assay)
Limit of Detection: 1.5 mg/L
Reaction Time (min): ~ 25 min
Application examples: Beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, baby foods, bread, sugar products, bakery products, candies, desserts, confectionery, chocolate, ice-cream, fruit and vegetables, condiments, tobacco, cosmetics, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.).
Method recognition: Methods based on this principle have been accepted by AOAC, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN and MEBAK

The Maltose/Sucrose/D-Glucose Assay Kit is suitable for the measurement and analysis of maltose, sucrose and D-glucose in plant and food products.

Note for Content: The number of manual tests per kit can be doubled if all volumes are halved.  This can be readily accommodated using the MegaQuantTM  Wave Spectrophotometer (D-MQWAVE).

See more of our monosaccharide and oligosaccharide test kits.

Scheme-K-MASUG MASUG Megazyme

Advantages
  • Very competitive price (cost per test) 
  • All reagents stable for > 2 years after preparation 
  • Rapid reaction 
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing 
  • Standard included
Documents
Certificate of Analysis
Safety Data Sheet
FAQs Booklet Data Calculator
Publications
Publication

Chemical Composition of Sour Beer Resulting from Supplementation the Fermentation Medium with Magnesium and Zinc Ions.

Ciosek, A., Fulara, K., Hrabia, O., Satora, P. & Poreda, A. (2020). Biomolecules, 10(12), 1599.

The bioavailability of minerals, such as zinc and magnesium, has a significant impact on the fermentation process. These metal ions are known to influence the growth and metabolic activity of yeast, but there are few reports on their effects on lactic acid bacteria (LAB) metabolism during sour brewing. This study aimed to evaluate the influence of magnesium and zinc ions on the metabolism of Lactobacillus brevis WLP672 during the fermentation of brewers’ wort. We carried out lactic acid fermentations using wort with different mineral compositions: without supplementation; supplemented with magnesium at 60 mg/L and 120 mg/L; and supplemented with zinc at 0.4 mg/L and 2 mg/L. The concentration of organic acids, pH of the wort and carbohydrate use was determined during fermentation, while aroma compounds, real extract and ethanol were measured after the mixed fermentation. The addition of magnesium ions resulted in the pH of the fermenting wort decreasing more quickly, an increase in the level of L-lactic acid (after 48 h of fermentation) and increased concentrations of some volatile compounds. While zinc supplementation had a negative impact on the L. brevis strain, resulting in a decrease in the L-lactic acid content and a higher pH in the beer. We conclude that zinc supplementation is not recommended in sour beer production using L. brevis WLP672.

Hide Abstract
Publication

Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.).

Suárez-Estrella, D., Bresciani, A., Iametti, S., Marengo, M., Pagani, M. A. & Marti, A. (2020). Plant Foods for Human Nutrition, 75(4), 635-641.

This study aims at understanding the relation among sprouting time (from 12 up to 72 h), changes in protein and starch components, and flour functionality in quinoa. Changes related to the activity of sprouting-related proteases were observed after 48 h of sprouting in all protein fractions. Progressive proteolysis resulted in relevant modification in the organization of quinoa storage proteins, with a concomitant increase in the availability of physiologically relevant metals such as copper and zinc. Changes in the protein profile upon sprouting resulted in improved foam stability, but in impaired foaming capacity. The increased levels of amylolytic enzymes upon sprouting also made starch less prompt to gelatinize upon heating. Consequently, starch re-association in a more ordered structure upon cooling was less effective, resulting in low setback viscosity. The nature and the intensity of these modifications suggest various possibilities as for using flour from sprouted quinoa as an ingredient in the formulation of baked products.

Hide Abstract
Publication

Sprouting improves the bread‐making performance of whole wheat flour (Triticum aestivum L.).

Cardone, G., D'Incecco, P., Pagani, M. A. & Marti, A. (2020). Journal of the Science of Food and Agriculture, 100(6), 2453-2459.

Background: Pre‐harvest sprouting of wheat is viewed negatively because of the high level of enzymatic activity, which leads to a deterioration in the bread‐making performance of the related flours. On the other hand, improvements in bread properties (i.e. volume and crumb softness) are reported when sprouted wheat under controlled conditions is used in mixtures with a conventional unsprouted flour. However, knowledge about the effects of sprouting on gluten functionality and its relationship with bread features is still limited, especially in the case of whole wheat flour. Results: Under the conditions applied in this study (48 h, 20°C and 90% relative humidity), proteins of sprouted wheat were still able to aggregate, even if changes in gluten aggregation kinetics suggested gluten weakening. On the other hand, sprouting led to an increase in gluten stretching ability, suggesting an increase in dough extensibility. In the dough system, sprouting was responsible for a decrease in water absorption, development time, and stability during mixing. However, when the values for development time and water absorption indicated by the Farinograph® were followed carefully, sprouting improved bread height (~20%), specific volume (~15%), and crumb softness (~200% after 24 h of storage), even when whole wheat flour was used. Conclusion: It is possible to produce bread with improved volume and crumb softness using whole wheat flour from sprouted kernels. Thus, sprouting can be exploited as a pre‐treatment to improve the bread‐making performance of fiber‐enriched systems.

Hide Abstract
Publication

Performance of non-Saccharomyces yeasts isolated from Jiaozi in dough fermentation and steamed bread making.

Li, Z., Li, H., Song, K. & Cui, M. (2019). LWT, 111, 46-54.

The characteristics of three non-Saccharomyces yeasts, namely, Wickerhamomyces anomalus Y13, Saccharomycopsis fibuligera Y18, and Torulaspora delbrueckii Y22, isolated from Jiaozi in dough fermentation and steamed bread making were investigated and compared with those of Saccharomyces cerevisiae Y10. The maltose levels in the dough fermented by Y13, Y18, and Y22 in the entire fermentation were higher than those in the dough fermented by Y10. The CO2 production kinetics of Y22 was similar to that of Y10, but the total CO2 volume was slightly less. The volume of CO2 produced by Y13 and Y18 was less than 30% of that generated by Y10. The sensory qualities of Y22-prepared steamed bread were similar to those of Y10 and could also be accepted. The degree of whiteness of the steamed bread prepared with Y22 was higher than that produced with Y10. Steamed bread produced with each of the non-Saccharomyces yeasts contained unique volatile compounds, and the highest number of categories of volatile compounds were observed in the product prepared with Y22. The results indicated that non-Saccharomyces yeasts exhibited distinctive characteristics of dough fermentation and showed the potential for applications in dough fermentation and steamed bread making.

Hide Abstract
Publication

Identification of the bacteria and their metabolic activities associated with the microbial spoilage of custard cream desserts.

Techer, C., Jan, S., Thierry, A., Maillard, M. B., Grosset, N., Galet, O., Breton, V., Gautier, M. & Baron, F. (2020). Food Microbiology, 86, 103317.

The famous French dessert “ile flottante” consists of a sweet egg white foam floating on a vanilla custard cream, which contains highly nutritive raw materials, including milk, sugar and egg. Spoilage issues are therefore a key concern for the manufacturers. This study explored the bacterial diversity of 64 spoiled custard cream desserts manufactured by 2 French companies. B. cereus group bacteria, coagulase negative Staphylococcus, Enterococcus and Leuconostoc spp. were isolated from spoiled products. Thirty-one bacterial isolates representative of the main spoilage species were tested for their spoilage abilities. Significant growth and pH decrease were observed regardless of species. While off-odours were detected with B. cereus group and staphylococci, yoghurt odours were detected with Enterococcus spp. And Leuconostoc spp. B. cereus group bacteria produced various esters and several compounds derived from amino acid and sugar metabolism. Most Staphylococci produced phenolic compounds. Enterococcus spp. And Leuconostoc spp. isolates produced high levels of compounds derived from sugar metabolism. Each type of spoilage bacteria was associated with a specific volatile profile and lactic acid was identified as a potential marker of spoilage of custard cream-based desserts. These findings provide valuable information for manufacturers to improve food spoilage detection and prevention of chilled desserts made with milk and egg.

Hide Abstract
Publication

Fortified blended food base: effect of co-fermentation time on composition, phytic acid content and reconstitution properties.

Shevade, A. V., O’Callaghan, Y. C., O’Brien, N. M., O’Connor, T. P. & Guinee, T. P. (2019). Foods, 8(9), 388.

Dehydrated blends of dairy-cereal combine the functional and nutritional properties of two major food groups. Fortified blended food base (FBFB) was prepared by blending fermented milk with parboiled wheat, co-fermenting the blend at 35°C, shelf-drying and milling. Increasing co-fermentation time from 0 to 72 h resulted in powder with lower lactose, phytic acid and pH, and higher contents of lactic acid and galactose. Simultaneously, the pasting viscosity of the reconstituted base (16.7%, w/w, total solids) and its yield stress (σ0), consistency index (K) and viscosity on shearing decreased significantly. The changes in some characteristics (pH, phytic acid, η120) were essentially complete after 24 h co-fermentation while others (lactose, galactose and lactic acid, pasting viscosities, flowability) proceeded more gradually over 72 h. The reduction in phytic acid varied from 40 to 58% depending on the pH of the fermented milk prior to blending with the parboiled cereal. The reduction in phytic acid content of milk (fermented milk)-cereal blends with co-fermentation time is nutritionally desirable as it is conducive to an enhanced bioavailability of elements, such as Ca, Mg, Fe and Zn in milk-cereal blends, and is especially important where such blends serve as a base for fortified-blended foods supplied to food-insecure regions.

Hide Abstract
Publication
Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains.

Canonico, L., Comitini, F. & Ciani, M. (2017). International Journal of Food Microbiology, 259, 7-13.

In recent years, there has been growing demand for distinctive high quality beer. Fermentation management has a fundamental role in beer quality and the levels of aroma compounds. Use of non-conventional yeast has been proposed to enhance beer bioflavor. In the present work we investigated mixed fermentations using three commercial Saccharomyces cerevisiae strains, without and with addition of a selected Torulaspora delbrueckii strain evaluating their interactions, as well as the aroma profiles. At the S. cerevisiae/T. delbrueckiico-inoculation ratio of 1:20, viable cell counts indicated that T. delbrueckii dominated all of the three combinations. In the mixed fermentations, T. delbrueckii provided higher levels of higher alcohols (excepting of β-phenyl ethanol), in contrast to data obtained in winemaking, where higher alcohols had lower levels. Moreover, mixed fermentations showed significantly higher ethyl acetate (from 5 to 16 mg/L) and isoamyl acetate (from 0.019 to 0.128 mg/L), and were generally lower in ethyl hexanoate and ethyl octanoate. Therefore, irrespective of S. cerevisiae strain, T. delbrueckii influenced on all mixed fermentations. On the other hand, the mixed fermentations were also affected by each of the three S. cerevisiae strains, which resulted in beers with distinctive flavors.

Hide Abstract
Publication
Antiglycemic Effect of Water Extractable Arabinoxylan from Wheat Aleurone and Bran.

Malunga, L. N., Izydorczyk, M. & Izydorczyk, M. (2017). Journal of Nutrition and Metabolism, Article ID 5784759.

The studies on the effects of arabinoxylan (AX) polysaccharides on postprandial glucose response have resulted in contrasting results owing to the diversity in AX structures. Four water extractable AX (WEAX) extracts obtained from wheat aleurone and bran were used to investigate (a) the effect of AX on activities of α-amylase and α-glucosidase, (b) influence of AX chemical composition on their inhibition potency, and (c) kinetics of enzyme inhibition. α-Amylase activity was not significantly affected by the presence WEAX fractions regardless of type or concentration. WEAX inhibited α-glucosidase activity only when maltose was used as a substrate but not sucrose. The IC50 values of WEAX (4.88 ± 0.3-10.14 ± 0.5 mg/mL) were highly correlated to ferulic acid content (R = -0.89), arabinose to xylose ratio (R = -0.67), and relative proportions of xylose being unsubstituted (R = -0.69), disubstituted (R = -0.63), and monosubstituted (R = -0.76). The Lineweaver–Burk plot suggested an uncompetitive enzyme inhibition mode. Thus, our results suggest that antiglycemic properties of WEAX may be derived from direct inhibition of α-glucosidase activity.

Hide Abstract
Publication
Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content.

Canonico, L., Agarbati, A., Comitini, F. & Ciani, M. (2016). Food microbiology, 56, 45-51.

Nowadays, consumers require fermented alcoholic beverages with particular and enhanced flavour profiles while avoiding the health concerns due to high ethanol content. Here, the use of Torulaspora delbrueckii was evaluated for beer production, in both pure and in mixed cultures with a Saccharomyces cerevisiae starter strain (US-05). The yeast interactions were also evaluated. In mixed fermentations with S. cerevisiae, the main analytical characters from T. delbrueckii were comparable with those of the S. cerevisiae starter strain, but the beers were characterized by a distinctive overall analytical and aromatic profile. Indeed, there were interactions between S. cerevisiae and T. delbrueckii, with enhanced ethyl hexanoate (0.048 mg l-1) and ethyl octaonate (0.014 mg l-1) levels at the 1:20 and 1:10 inoculation ratios, respectively; while phenyl ethyl acetate increased in all mix combinations. The presence of T. delbrueckii resulted in reduced β-phenyl ethanol and isoamyl acetate levels, which are responsible for floral and fruity aromas, respectively. Beer produced with T. delbrueckii pure cultures had a low alcohol content (2.66%; v/v), while also showing a particularly analytical and aromatic profile.

Hide Abstract
Publication
Process modelling and technology evaluation in brewing.

Muster-Slawitsch, B., Hubmann, M., Murkovic, M. & Brunner, C. (2014). Chemical Engineering and Processing: Process Intensification, 84, 98-108.

To reach an integrated sustainable production site, it is important to analyse effects of technology changes. A “brewery model” has been developed which allows process modelling of a brewing facility. Besides the comparison of specific demand figures, it allows a holistic view of the production site and most importantly the modelling of energy demand profiles. Energy demand profiles in brewing vary significantly based on the chosen technology set. Furthermore they are notably influenced by production planning, heat exchanger surfaces and heat supply management. A reduction in energy intensity in the brewhouse processes will lead to the possibility to design heat supply equipment at lower capacity. The mashing process is an important candidate in considerations for heat recovery and low temperature heat supply. New temperature profiles in mashing can improve processing time, quality of the produced wort as well as enable the integration of low temperature heat in a better way.

Hide Abstract
Publication
Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweetpotato- and maize-based complementary foods.

Amagloh, F. K., Mutukumira, A. N., Brough, L., Weber, J. L., Hardacre, A. & Coad, J. (2013). Food & Nutrition Research, 57.

Background: Cereal-based complementary foods from non-malted ingredients form a relatively high viscous porridge. Therefore, excessive dilution, usually with water, is required to reduce the viscosity to be appropriate for infant feeding. The dilution invariably leads to energy and nutrient thinning, that is, the reduction of energy and nutrient densities. Carbohydrate is the major constituent of food that significantly influences viscosity when heated in water. Objectives: To compare the sweetpotato-based complementary foods (extrusion-cooked ComFa, roller-dried ComFa, and oven-toasted ComFa) and enriched Weanimix (maize-based formulation) regarding their 1) carbohydrate composition, 2) viscosity and water solubility index (WSI), and 3) sensory acceptance evaluated by sub-Sahara African women as model caregivers. Methods: The level of simple sugars/carbohydrates was analysed by spectrophotometry, total dietary fibre by enzymatic-gravimetric method, and total carbohydrate and starch levels estimated by calculation. A Rapid ViscoTM Analyser was used to measure viscosity. WSI was determined gravimetrically. A consumer sensory evaluation was used to evaluate the product acceptance of the roller-dried ComFa, oven-toasted ComFa, and enriched Weanimix. Results: The sweetpotato-based complementary foods were, on average, significantly higher in maltose, sucrose, free glucose and fructose, and total dietary fibre, but they were markedly lower in starch content compared with the levels in the enriched Weanimix. Consequently, the sweetpotato-based complementary foods had relatively low apparent viscosity, and high WSI, than that of enriched Weanimix. The scores of sensory liking given by the caregivers were highest for the roller-dried ComFa, followed by the oven-toasted ComFa, and, finally, the enriched Weanimix. Conclusions: The sweetpotato-based formulations have significant advantages as complementary food due to the high level of endogenous sugars and low starch content that reduce the viscosity, increase the solubility, impart desirable sensory characteristics, and potentially avoid excessive energy and nutrient thinning.

Hide Abstract
Publication
Towards a FRET-based immunosensor for continuous carbohydrate monitoring.

Engström, H. A., Andersson, P. O., Gregorius, K. & Ohlson, S. (2008). Journal of Immunological Methods, 333(1-2), 107-114.

In this report we have evaluated the potential of using fluorescence/Förster resonance energy transfer (FRET) in a competitive immunosensor for continuous monitoring of the carbohydrate hapten maltose. The cyanine dyes Cy5 and Cy5.5 were used as a donor–acceptor pair by conjugation to maltose-labeled bovine serum albumin (BSA) and the monoclonal antibody IgG 39.5, giving Cy5–BSA–maltotriitol (3.1/1/18) and Cy5.5–mAb39.5 (2.2/1), respectively. This antibody with weak affinity towards maltose showed full reversibility to both the free maltose and the maltose-labeled conjugate. It allowed us to measure continuously the maltose content by monitoring the FRET signal change over time due to displacement of Cy5–BSA–maltotriitol from Cy5.5–mAb39.5 inside a semipermeable capsule. A near 22% total increase was seen in the fluorescence intensity ratio I670/I700 in the presence of maltose, with a calculated EC50= 1.87 ± 0.13 mM (R2= 0.9984) from the sigmoidal dose–response curve at 25°C. Specificity of the immunosensor was shown with the structural analog to maltose, cellobiose, and it generated no detectable response. A minor drift in the sensor baseline was seen with 0.4% per 24 h, which was in the same magnitude as the signal-to-noise ratio, during the 4 weeks of measurements. The immunosensor was applied to crude samples of oat drinks for direct quantification of the maltose content. Overall, this work demonstrates the potential to use an immunosensor based on weakly binding antibodies and FRET technology for remote and non-invasive carbohydrate monitoring.

Hide Abstract
Safety Information
Symbol : GHS05, GHS08
Signal Word : Danger
Hazard Statements : H314, H334, H360
Precautionary Statements : P201, P202, P260, P261, P264, P280, P284, P301+P330+P331, P304+P340, P342+P311, P501
Safety Data Sheet
Customers also viewed
Amyloglucosidase Aspergillus niger E-AMGDF
Amyloglucosidase (Aspergillus niger)
€58.00
D-Fructose D-Glucose Assay Kit K-FRUGL FRUGL
D-Fructose/D-Glucose Assay Kit
€185.00
Sucrose D-Glucose Assay Kit K-SUCGL
Sucrose/D-Glucose Assay Kit
€219.00
D- L-Lactic Acid D- L-Lactate Rapid Assay Kit K-DLATE DLATE
D-/L-Lactic Acid (D-/L-Lactate) (Rapid) Assay Kit
€303.00
Glycerol GK Assay Kit K-GCROLGK GCROLGK
Glycerol GK Assay Kit
€118.00
Glycerol Assay Kit K-GCROL GCROL
Glycerol Assay Kit
€119.00
beta-Glucan Assay Kit Mixed Linkage K-BGLU BGLU
β-Glucan Assay Kit (Mixed Linkage)
€227.00
Ethanol Assay Kit K-ETOH ETOH
Ethanol Assay Kit
€133.00