TRIS Buffer Salt

BIS-TRIS Buffer salt B-BISTRIS250
Reference code: B-TRIS500
SKU: 700004162

500 g

Content: 500 g
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Solid
Stability: > 5 years under recommended storage conditions
CAS Number: 77-86-1
Molecular Formula: C4H11NO3
Molecular Weight: 121.1
Purity: ≥ 99%
pKa: 8.1 at 25oC
Useful pH Range: 7.0-9.0

High purity TRIS Buffer Salt provides buffering capacity for maintaining constant pH of biological and chemical solutions.

We offer more buffers.

Documents
Certificate of Analysis
Safety Data Sheet
Data Sheet
Publications
Megazyme publication

Diastatic power and maltose value: a method for the measurement of amylolytic enzymes in malt.

Charmier, L. M., McLoughlin, C. & McCleary, B. V. (2021). Journal of the Institute of Brewing, In Press.

A simple method for measurement of the amylolytic activity of malt has been developed and fully evaluated. The method, termed the Maltose Value (MV) is an extension of previously reported work. Here, the MV method has been studied in detail and all aspects of the assay (sample grinding and extraction, starch hydrolysis, maltose hydrolysis and determination as glucose) have been optimised. The method is highly correlated with other dextrinising power methods. The MV method involves extraction of malt in 0.5% sodium chloride at 30°C for 20 minutes followed by filtration; incubation of an aliquot of the undiluted filtrate with starch solution (pH 4.6) at 30°C for 15 min; termination of reaction with sodium hydroxide solution; dilution of sample in an appropriate buffer; hydrolysis of maltose with a specific α-glucosidase; glucose determination and activity calculation. Unlike all subsequent reducing sugar methods, the maltose value method measures a defined reaction product, maltose, with no requirement to use equations to relate analytical values back to Lintner units. The maltose value method is the first viable method in 130 years that could effectively replace the 1886 Lintner method.

Hide Abstract
Megazyme publication

Prediction of potential malt extract and beer filterability using conventional and novel malt assays.

Cornaggia, C., Evans, D. E., Draga, A., Mangan, D. & McCleary, B. V. (2019). Journal of Institute of Brewing, 125(3), 294-309.

Colourimetric assays were used to measure the activities of six key hydrolases endogenous to barley: β‐glucanase, xylanase, cellulase, α-amylase, beta‐amylase and limit dextrinase. The analysed barley malt samples were previously characterised by 27 conventional malt quality descriptors. Correlations between enzymatic activities and brewing parameters such as extract yield, fermentability, viscosity and filterability were investigated. A single extraction protocol for all six hydrolases was optimised and used for multi‐enzyme analysis using fully automatable assay formats. A regression analysis between malt parameters was undertaken to produce a relationship matrix linking enzyme activities and conventional malt quality descriptors. This regression analysis was used to inform a multi‐linear regression approach to create predictive models for extract yield, apparent attenuation limit, viscosity and filterability using the Small‐scale Wort rapId Filtration Test (SWIFT) and two different mashing protocols – Congress and a modified infusion mash at 65oC (MIM 65oC). It was observed that malt enzyme activities displayed significant correlations with the analysed brewing parameters. Both starch hydrolases and cell wall hydrolase activities together with modification parameters (i.e. Kolbach index) were found to be highly correlated with extract yield and apparent attenuation limit. Interestingly, it was observed that xylanase activity in malts was an important predictor for wort viscosity and filterability. It is envisaged that the automatable measurement of enzyme activity could find use in plant breeding progeny selection and for routine assessment of the functional brewing performance of malt batches. This analytical approach would also contribute to brewing process consistency, product quality and reduced processing times.

Hide Abstract
Publication

Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Times.

Adetokunboh, A. H., Obilana, A. O. & Jideani, V. A. (2022). Foods, 11(6), 783.

Bambara groundnut (BGN) is termed a complete food due to its nutritional composition and has been researched often for its nutritional constituents. Malting BGN seeds have shown improved nutritional and functional characteristics, which can be used to produce an amylase-rich product as a functional ingredient for food and beverage production in homes and industries. The aim of this study was to investigate the enzyme and antioxidant activities of malted BGN affected by steeping and sprouting times. BGN was malted by steeping in distilled water at 25-30°C for 36 and 48 h and then sprouted for 144 h at 30°C. Samples were drawn every 24 h for drying to study the effect of steeping and sprouting times on the moisture, sprout length, pH, colour, protein content, amylase, total polyphenols, and antioxidant activities of the BGN seeds. The steeping and sprouting times significantly affected the BGN malt colour quality and pH. The protein content of the malted BGN seeds was not significantly different based on steeping and sprouting times. Steeping and sprouting times significantly affected the α- and β-amylase activities of the BGN seeds. The activity of amylases for 36 and 48 h steeping times were 0.16 and 0.15 CU/g for α-amylase and were 0.22 and 0.23 BU/g for β-amylase, respectively. Amylase-rich BGN malt was produced by steeping for 36 h and sprouting for 96 h. Amylase-rich BGN malt can be useful as a functional food ingredient in food and beverage formulations.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
MES monohydrate Buffer salt B-MES250
MES monohydrate Buffer Salt
Total Dietary Fiber Assay Kit K-TDFR TDFR
Total Dietary Fiber Assay Kit