The product has been successfully added to your shopping list.

α-Glucuronidase (Geobacillus stearothermophilus)

Product code: E-AGUBS

200 Units at 70oC

Prices exclude VAT

Available for shipping

Content: 200 Units at 70oC
Shipping Temperature: Ambient
Storage Temperature: 2-8oC
Formulation: In 50% (v/v) glycerol
Physical Form: Solution
Stability: > 2 years below -10oC
Enzyme Activity: α-Glucuronidase
EC Number:
CAZy Family: GH67
CAS Number: 37259-81-7
Synonyms: alpha-glucuronidase; alpha-D-glucosiduronate glucuronohydrolase
Source: Geobacillus stearothermophilus
Molecular Weight: 93,200
Concentration: Supplied at ~ 100 U/mL (70oC)
Expression: Recombinant from Geobacillus stearothermophilus
Specificity: Hydrolysis of the α-1,2 glycosidic bond between D-glucuronic acid or its ether 4-O-methyl-D-glucuronic acid from the terminal non-reducing D-xylose residues of xylo-oligosaccharides (aldo-uronic acids) and xylan.
Specific Activity: ~ 40 U/mg (70oC, pH 7.0 on aldotriouronic acid); 
~ 10 U/mg (40oC, pH 7.0 on aldotriouronic acid)
Unit Definition: One Unit of α-D-glucuronidase activity is defined as the amount of enzyme required to release one µmole of α-D-glucuronic acid per minute from aldouronic acid in MOPS buffer (100 mM), pH 7.0 at 70oC.
Temperature Optima: 70oC
pH Optima: 7
Application examples: Applications in carbohydrate research, the paper pulp industry and preparation of xylans for pharmaceutical and cosmetic formulations.

High purity recombinant α-Glucuronidase (Geobacillus stearothermophilus) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Need other enzymes? View our full CAZy enzyme products list.

Certificate of Analysis
Safety Data Sheet
Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods.

Malgas, S., Chandra, R., Van Dyk, J. S., Saddler, J. N. & Pletschke, B. I. (2017). Bioresource Technology, 245, Part A, 52-65.

In this study, two selected hardwoods were subjected to sodium chlorite delignification and steam explosion, and the impact of pre-treatments on synergistic enzymatic saccharification evaluated. A cellulolytic core-set, CelMix, and a xylanolytic core-set, XynMix, optimised for glucose and xylose release, respectively, were used to formulate HoloMix cocktail for optimal saccharification of various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of 75%: 25%, while for untreated and steam exploded biomass the HoloMix consisted of 93.75%: 6.25% protein dosage, CelMix: XynMix, respectively. Saccharification by HoloMix (27.5 mg protein/g biomass) for 24 h achieved 70-100% sugar yields. Pre-treatment of the hardwoods, especially those with a higher proportion of lignin, with a laccase improved saccharification by HoloMix. This study provided insights into enzymatic hydrolysis of various pre-treated hardwood substrates and showed the same lignocellulolytic cocktail comparable to/if not better than commercial enzyme preparations can be used to efficiently hydrolyse different hardwood species.

Hide Abstract
The reducing end sequence of wheat endosperm cell wall arabinoxylans.

Ratnayake, S., Beahan, C. T., Callahan, D. L. & Bacic, A. (2014). Carbohydrate Research, 386, 23-32.

Walls from wheat (Triticum aestivum L.) endosperm are composed primarily of hetero-(arabino)xylans (AXs) (70%) and (1→3)(1→4)-β-D-glucans (20%) with minor amounts of cellulose and heteromannans (2% each). To understand the differential solubility properties of the AXs, as well as aspects of their biosynthesis, we are sequencing the xylan backbone and examining the reducing end (RE) sequence(s) of wheat (monocot) AXs. A previous study of grass AXs (switchgrass, rice, Brachypodium, Miscanthus and foxtail millet) concluded that grasses lacked the comparable RE glycosyl sequence (4-β-D-Xylp-(1→4)-β-D-Xylp-(1→3)-α-L-Rhap-(1→2)-α-D-GalpA-(1→4)-D-Xylp) found in dicots and gymnosperms but the actual RE sequence was not determined. Here we report the isolation and structural characterisation of the RE oligosaccharide sequence(s) of wheat endosperm cell wall AXs. Walls were isolated as an alcohol-insoluble residue (AIR) and sequentially extracted with hot water (W-sol Fr) and 1 M KOH containing 1% NaBH4 (KOH-sol Fr). Detailed structural analysis of the RE oligosaccharides was performed using a combination of methylation analysis, MALDI-TOF-MS, ESI-QTOF-MS, ESI-MSn and enzymic analysis. Analysis of RE oligosaccharides, both 2AB labelled (from W-sol Fr) and glycosyl-alditol (from KOH-sol Fr), revealed that the RE glycosyl sequence of wheat endosperm AX comprises a linear (1→4)-β-D-Xylp backbone which may be mono-substituted with either an α-L-Araf residue at the reducing end β-D-Xylp residue and/or penultimate RE β-D-Xyl residue; β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/−)-β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/−)-β-D-Xylp and/or an α-D-GlcpA residue at the reducing end β-D-Xylp residue; β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/−)-β-D-Xylp-(1→4)-[α-D-GlcAp-(1→2)]-β-D-Xylp. Thus, wheat endosperm AX backbones lacks the RE sequence found in dicot and gymnosperm xylans; a finding consistent with previous reports from other grass species.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Bromelain Ananas comosus E-BROM
Bromelain from pineapple stems (Ananas comosus)
Fructanase Mixture Ultrapure recombinant powder E-FRPDPU
Fructanase Mixture (Ultrapure, recombinant, powder)
Chitinase Clostridium thermocellum E-CHITN
Chitinase (Clostridium thermocellum)
Invertase E-INVPD
beta-galactosidase Escherichia coli E-ECBGAL
β-Galactosidase (Escherichia coli)
Isoamylase Glycogen 6-glucanohydrolase E-ISAMY
Isoamylase (Glycogen 6-glucanohydrolase)
Invertase fructofuranosidase yeast E-INVRT
Invertase (fructofuranosidase) (yeast)
exo-Inulinase Aspergillus niger E-EXOIAN
exo-Inulinase (Aspergillus niger)