The product has been successfully added to your shopping list.

Formate dehydrogenase (Candida boidinii)

Formate dehydrogenase Candida boidinii E-FDHCB
Product code: E-FDHCB
€161.00

300 Units at 25oC; ~ 600 Units at 37oC

Prices exclude VAT

Available for shipping

Content: 300 Units at 25oC; 
~ 600 Units at 37oC
Shipping Temperature: Ambient
Storage Temperature: 2-8oC
Formulation: In 3.2 M ammonium sulphate
Physical Form: Suspension
Stability: Minimum 1 year at 4oC. Check vial for details.
Enzyme Activity: Dehydrogenase
EC Number: EC 1.2.1.2 (transferred to EC 1.17.2.9)
CAS Number: 9028-85-7
Synonyms: formate dehydrogenase; formate:NAD+ oxidoreductase
Source: Candida boidinii
Molecular Weight: 41,331
Concentration: Supplied at ~ 75 U/mL
Expression: Recombinant from Candida boidinii
Specificity: Catalyses the reaction:
Formate + NAD+ = CO2 + NADH
Specific Activity: ~ 1 U/mg (25oC, pH 7.6 on formic acid)
Unit Definition: One Unit of formate dehydrogenase is defined as the amount of enzyme required to convert one µmole of formic acid to NADH + CO2 per minute in the presence of NAD+ in potassium phosphate buffer (41 mM), pH 7.6 at 25oC.
Temperature Optima: 37oC
pH Optima: 7.6
Application examples: Applications for the measurement of formate in the food, fermentation, wine, beverage and dairy industries.

High purity recombinant Formate dehydrogenase (Candida boidinii) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

View our full range of analytical enzymes.

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Publication
(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme.

Muschallik, L., Molinnus, D., Bongaerts, J., Pohl, M., Wagner, T., Schöning, M. J., Siegert, P. & Selmer, T. (2017). Journal of Biotechnology, 258, 41-50.

The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R, R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
beta-Glucosidase Thermostable Thermotoga maritima E-BGOSTM
β-Glucosidase (Thermotoga maritima)
€203.00