validated methods
Expedited tracked shipping worldwide
A multi award winning company

Starch Toolkit

Megazyme’s complete toolkit for the study of starch and the enzymes that act on it

Starch is the main source of carbohydrates in the human diet. It occurs in plants as a storage polysaccharide and is found in high abundance in seeds and tubers. Starch is clearly of huge importance to the food industry but is also important to the paper, textiles, bioplastics and oil industries. Starch consists of two component subgroups:
1) amylose – made up of long linear chains of α-1,4-D-glucose residues (DP ~ 300-3000) and 2) amylopectin – that contains linear chains of 1,4-α-linked D-glucosyl residues joined through 1,6-α-branch points which represent between 3 and 4.2% of total linkages. The equivalent storage polysaccharide in animal tissue, namely glycogen, contaiins a higher degree of branching, with 1,6-branch points representing approximately 10% of total linkages.

           Image for the starch toolkit page

Figure: Amylopectin is composed of linear α-1,4-D-glucopyranosyl chains with α-1,6 branch points every 24-30 residues.

Resistant Starch is the term given to any starch that is resistant to hydrolysis by the enzymes present in the human small intestine. Four different types of resistant starch have been defined by Englyst et al. (Englyst, H.N. Kingman, S.M. & Cummings, J.H. (1992). European J. Clin. Nutr., 46 (Suppl.2), S33-S50).

RS1:  Physically inaccessible starch, such as that found in seeds or legumes and unprocessed whole grains.

RS2:  Resistant starch that occurs in its natural granular form, such as uncooked potato, green banana flour and high amylose corn.

RS3:  Resistant starch that is formed when starch-containing foods are cooked and cooled such as in legumes, bread, cornflakes and cooked-and-chilled potatoes, pasta salad or sushi rice. This treatment leads to retrogradation – the recrystallisation of amylose and amylopectin on cooling – which makes starch resistant to enzymatic hydrolysis.

RS4:  Starches that have been synthetically modified to resist digestion. This type of resistant starch can exhibit a broad range of structural diversity. 

The analysis of how starch in food is degraded by the enzymes in the human digestive system is very important for the calculation of dietary fiber (undigested component) and available carbohydrates (digested component) in food. Megazyme is the industry leader in this area and extensive information on the topic can be found in our dietary fiber portal.

Assay kits

Starch and starch components

Megazyme has developed a number of novel assay kits for the study of starch. It is possible using enzymatic methods to determine the total starch (K-TSHK, K-TSTA, AOAC 996.11) and resistant starch (K-RSTAR, AOAC 2002.02) content in any sample. The amylose and amylopectin content in a sample can also be determined using Megazyme's Amylose/Amylopectin (K-AMYL) assay kit which is based on a Concanavalin A mediated precipitation step. The level of so-called ‘starch damage’ is another starch property that can be analysed enzymatically using the Starch Damage (K-SDAM) assay kit. In this kit, highly purified fungal α-amylase can act to break down damaged starch granules but displays almost no hydrolytic activity on undamaged granules. Dietary fiber (K-TDFR for AOAC 985.29, AOAC 991.43; K-INTDF for AOAC 2009.01, AOAC 2011.25 and K-RINTDF) and available carbohydrates (K-ACHDF) can be measured using enzymatic-gravimetric procedures. Free glucose content in a sample can be determined using either glucose oxidase or hexokinase procedures (K-GLUC and K-GLUHK).

Product Code   Product Name                                                                                                                                            
K-TSTA Total Starch (GOPOD method)   
K-TSHK  Total Starch (hexokinase method) 
K-TSCK  Total Starch Control Flours
K-RSTAR   Resistant Starch 
K-RSTCL   Resistant Starch Control Samples                         
K-AMYL   Amylose/Amylopectin 
K-SDAM   Starch Damage 
K-TDFR   Total Dietary Fiber 
K-INTDF   Integrated Total Dietary Fiber
K-RINTDF   Rapid Integrated Total Dietary Fiber   
K-TDFC  Total Dietary Fiber Control Flours
K-ACHDF  Available Carbohydrates 
K-GLUC   Glucose (GOPOD method)
K-GLUHK   Glucose (hexokinase method)  

Starch degrading enzymes

Defined colourimetric oligosaccharides have been formulated into assay kits to measure the major enzymes involved in starch degradation including α-amylase, β-amylase, amyloglucosidase and pullulanase/limit-dextrinase. In some cases, the reagent components from these kits are also available individually.

Product Code    Product Name Enzyme Assayed                                                                           
K-CERA  Ceralpha Assay (α-amylase)       α-Amylase
R-AMHR4  Amylase HR Reagent 
R-CAAR4  Ceralpha Reagent 
K-AMYLSD Amylase SD (α-amylase)  
K-MALTA  Malt Amylase (α- plus β-amylase)  
K-BETA3  Betamyl Assay (β-amylase)   β-Amylase
R-BAMR3   Betamyl Reagent 
R-AMGR3   Amyloglucosidase Reagent  Amyloglucosidase
K-PULLG6   Pullulanse/Limit Dextrinase Pullulanase/Limit Dextrinase



Mixed linkage amylooligosaccharides are available from Megazyme for use as chromatographic standards and for use in enzyme characterisation and binding studies.

Product Code  Product Name Chemical Structure                                                                      
O-IPAN  Isopanose  Isopanose
O-GMT   63-α-D-glucosyl-
O-GMH   63-α-D-glucosyl-
O-MTMT   63-α-D-maltotriosyl-
O-MTMTRD   63-α-D-maltotriosyl-
maltotriose (BH4 reduced)


β-Limit dextrin is available as a substrate for the measurement of α-amylase activity according to the Farrand, AACC (SKB Units) or ASBC (Dextrinising Units, DU) iodine based methods; while pullulan and borohydride reduced pullulan are available for the measurement of limit-dextrinase/pullulanase.

Product Code   Product Name                                                                                                                                         
P-BLDX β-Limit Dextrin
P-PULLN   Pullulan
P-PULLBH  Pullulan (NaBH4 reduced)                 


α-Amylase (EC is an endo-acting enzyme that hydrolyses α-1,4 glucose linkages in starch. It is available from bacterial, fungal and porcine sources in general analytical and ultra-pure form from Megazyme.

β-Amylase (EC is an exo-acting enzyme that cleaves maltose units from the non-reducing end of α-1,4 oligosaccharides and polysaccharide starch fragments.

α-Glucosidase (EC is an exo-acting enzyme that cleaves glucose units from the non-reducing end of α-1,4 oligosaccharide and polysaccharide starch fragments.

Amyloglucosidase (EC is another exo-acting enzyme that operates on the non-reducing end of starch oligomers and polymers, however it hydrolyses α-1,6 linkages as well as the α-1,4 linkages. This is a key enzyme employed in the assay of dietary fiber in the food industry. Contaminants are often present in commercial preparations of this enzyme that can strongly affect the assay results. Megazyme’s formulation (E-AMGDF) has the highest purity commercially available.

Limit-dextrinase is an endo-acting enzyme that occurs in low abundance in nature but is of crucial importance to certain industries, notably the brewing industry. Limit-dextrinase hydrolyses the α-1,6 linkages in starch but displays strict substrate binding requirements. For example, limit dextrinase exhibits no activity on 63-α-D-glucosyl-maltotriose but readily hydrolyses 63-α-D-maltotriosyl-maltotriose. Pullulanase is the microbial source equivalent enzyme of limit-dextrinase.

starch enzyme image
Figure: Schematic representation of the hydrolytic action of starch degrading enzymes.

Product Code   Enzyme                                                                                                                                                        
E-MAST  Malt amylase standard (a mixture of α- and β-amylases)
E-BLAAM  α-Amylase (Bacillus licheniformis) (high purity)
E-ANAAM α-Amylase (Aspergillus orzyae) (high purity)
α-Amylase (Bacillus amyloliquefaciens) (high purity)
E-PANAA  α-Amylase (Porcine pancreatic) (partially purified)
E-BAMBC  Recβ-Amylase (Bacillus cereus) (recombinant; ultra high purity)
E-BARBL  β-Amylase (Barley; liquid) (ultra high purity)
E-BARBP β-Amylase (Barley; powder) (ultra high purity)
E-TSAGL  α-Glucosidase (Bacillus stearothermophilus) (ultra high purity) 
Recα-Glucosidase (Bacillus stearothermophilus) (ultra high purity)
E-TRNGL α-Glucosidase (transglucosidase) (Aspergillus niger) (highly purified)
E-MALTS α-Glucosidase (maltase) (Yeast) (ultra high purity) 
Recα-Glucosidase (thermostable)  (Thermatoga maritima) (ultra high purity)
Amyloglucosidase (Aspergillus niger) (analytical grade)
E-AMGDFNG Amyloglucosidase (Aspergillus niger) Glycerol Free
Amyloglucosidase (powder) (Aspergillus niger) (analytical grade)
E-AMGFR  Amyloglucosidase (Aspergillus niger) (analytical grade)
Amyloglucosidase (Rhizopus sp.) (ultra high purity)
Pullulanase (Klebsiella planticola) (ultra high purity)
Pullulanase (Bacillus licheniformis) (ultra high purity)
 Rec(recombinant enzyme)

Enzyme Substrates

Colourimetric oligosaccharides are available in assay kit form for the measurement of α-amylase (K-CERA and K-AMYLSD), β-amylase (K-BETA3), amyloglucosidase (R-AMGR3) and pullulanase (K-PullG6). The active reagents (substrate plus ancillary enzyme) or the colourimetric oligosaccharide (substrate only) are available as standalone products in some cases.

Product Code    Product Name                         Chemical Structure                                                                           
α-Amylase substrates
(requires α-glucosidase)

β-Amylase substrates
O-PNPC3 4-Nitrophenyl-β-D-
(requires β-glucosidase)


(requires β-glucosidase)

α-Glucosidase substrates
O-PNPAG  4-Nitrophenyl-

Insoluble and soluble chromogenic enzyme substrates for the detection and measurement of α-amylase have been prepared from AZCL-amylose and dyed starch respectively. The analogous substrates for limit-dextrinase/pullulanase have been derived from AZCL-pullulan and dyed pullulan.

Soluble chromogenic substrates upon incubation with the requisite endo-acting enzyme produce a colourimetric response that can be related to enzyme activity through the standard curve provided.

Soluble substrate overview - starch portal

Insoluble chromogenic substrates
are recommended for qualitative screening experiments on agar/gels but these substrates are also available in tablet form where they can be employed in quantitative assays (again by relating measured absorbance back to a standard curve provided) with improved convenience and therefore higher throughput for the analyst.

Product  Code  Product Name                                                                                                                                            
α-Amylase Substrates 
T-AMZ Amylazyme                                                 
T-AMZBG  Amylazyme (plus lichenase) (for assay of α-amylase in barley and oats)                                  
T-AMZRD  Amylazyme Red 
T-AMZHY  Amylazyme (for assay of trace levels of a-amylase in honey) 
Soluble Substrates
S-RSTAR  Red Starch
Insoluble Substrates
I-AZAMYF AZCL-Amylose (fine)
I-RCLAMYF RedCL-Amylose (fine)
Limit-dextrinase / Pullulanase Substrates
T-LDZ  Limit-dextrizyme
Soluble Substrates
S-RPUL Red Pullulan
Insoluble Substrates
I-AZPUL  AZCL-Pullulan
I-AZPULF AZCL-Pullulan (fine)
I-RCLPULF RedCL-Pullulan (fine)