
10 mg
Prices exclude VAT
Available for shipping
Content: | 10 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Below -10oC |
Physical Form: | Solid |
Stability: | > 10 years under recommended storage conditions |
CAS Number: | 84325-20-2 |
Molecular Formula: | C40H58O28 |
Molecular Weight: | 986.9 |
Purity: | > 85% |
Substrate For (Enzyme): | endo-Cellulase |
Assay Format: | Spectrophotometer, Microplate, Auto-analyser |
Detection Method: | Fluorescence |
Wavelength (nm): | 365 (ex), 450 (em) |
A substrate for research into cellulase (endo-1,4-β-glucanase) or cellulose degrading enzymes.
See our complete list of soluble colourimetric oligosaccharide products.
33-β-D-Glucosyl-cellotriose O-GM - 1,4-β-D-Glucosyl-D-Mannose O-GGM - 1,4-β-D-Cellobiosyl-D-Mannose O-GMM - 1,4-β-D-Glucosyl-D-Mannobiose O-GMMBI - 1,4-β-D-Glucosyl-D-Mannose plus 1,4-β-D-Mannobiose
(Trichoderma longibrachiatum) E-CBHIIM - Cellobiohydrolase II (microbial) E-CELAN - Cellulase (endo-1,4-β-D-glucanase)
(Aspergillus niger) E-CELBA - Cellulase (endo-1,4-β-D-glucanase)
(Bacillus amyloliquefaciens) E-CELTE - Cellulase (endo-1,4-β-D-glucanase)
(Talaromyces emersonii) E-CELTH - Cellulase (endo-1,4-β-D-glucanase)
(Thermobifida halotolerans) E-CELTR - Cellulase (endo-1,4-β-D-glucanase)
(Trichoderma longibrachiatum) E-CELTM - Cellulase (endo-1,4-β-D-glucanase)
(Thermotoga maritima) E-BGLUC - β-Glucosidase (Aspergillus niger) E-BGOSAG - β-Glucosidase (Agrobacterium sp.) E-BGOSPC - β-Glucosidase (Phanerochaete chrysosporium) E-BGOSTM - β-Glucosidase (Thermotoga maritima) E-EXBGOS - exo-1,3-β-D-Glucanase + β-Glucosidase
McCleary, B. V., Mangan, D., Daly, R., Fort, S., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 385, 9-17.
A specific and sensitive substrate for the assay of endo-1,4-β-glucanase (cellulase) has been prepared. The substrate mixture comprises benzylidene end-blocked 2-chloro-4-nitrophenyl-β-cellotrioside (BzCNPG3) in the presence of thermostable β-glucosidase. Hydrolysis by exo-acting enzymes such as β-glucosidase and exo-β-glucanase is prevented by the presence of the benzylidene group on the non-reducing end D-glucosyl residue. On hydrolysis by cellulase, the 2-chloro-4-nitrophenyl-β-glycoside is immediately hydrolysed to 2-chloro-4-nitrophenol and free D-glucose by the β-glucosidase in the substrate mixture. The reaction is terminated and colour developed by the addition of a weak alkaline solution. The assay procedure is simple to use, specific, accurate, robust and readily adapted to automation. This procedure should find widespread applications in biomass enzymology and in the specific assay of endo-1,4-β-glucanase in general.
Hide AbstractMangan, D., McCleary, B. V., Liadova, A., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 395, 47-51.
There is a growing demand for research tools to aid the scientific community in the search for improved cellulase enzymes for the biofuel industry. In this work, we describe a novel fluorometric assay for cellulase (endo-1,4-β-glucanase) which is based on the use of 4,6-O-benzylidene-4-methylumbelliferyl-β-cellotrioside (BzMUG3) in the presence of an ancillary β-glucosidase. This assay can be used quantitatively over a reasonable linear range, or qualitatively as a solution screening tool which may find extensive use in the area of metagenomics.
Hide AbstractVersatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.
Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Hide Abstract