
10 mg
Prices exclude VAT
Available for shipping
Content: | 10 mg |
Shipping Temperature: | Ambient |
Storage Temperature: | Below -10oC |
Physical Form: | Solid |
Stability: | > 10 years under recommended storage conditions |
CAS Number: | Not Applicable |
Molecular Formula: | C36H54O28CIN |
Molecular Weight: | 984.26 |
Purity: | > 78% |
Substrate For (Enzyme): | endo-Cellulase |
Assay Format: | Spectrophotometer, Microplate, Auto-analyser |
Detection Method: | Absorbance |
Wavelength (nm): | 400-420 |
A substrate for research into cellulase (endo-1,4-β-glucanase) or cellulose degrading enzymes.
Other colourimetric oligosaccharide products for exo- or endo-glycosyl hydrolases available.
33-β-D-Glucosyl-cellotriose O-GM - 1,4-β-D-Glucosyl-D-Mannose O-GGM - 1,4-β-D-Cellobiosyl-D-Mannose O-GMM - 1,4-β-D-Glucosyl-D-Mannobiose O-GMMBI - 1,4-β-D-Glucosyl-D-Mannose plus 1,4-β-D-Mannobiose
(Trichoderma longibrachiatum) E-CBHIIM - Cellobiohydrolase II (microbial) E-CELAN - Cellulase (endo-1,4-β-D-glucanase)
(Aspergillus niger) E-CELBA - Cellulase (endo-1,4-β-D-glucanase)
(Bacillus amyloliquefaciens) E-CELTE - Cellulase (endo-1,4-β-D-glucanase)
(Talaromyces emersonii) E-CELTH - Cellulase (endo-1,4-β-D-glucanase)
(Thermobifida halotolerans) E-CELTR - Cellulase (endo-1,4-β-D-glucanase)
(Trichoderma longibrachiatum) E-CELTM - Cellulase (endo-1,4-β-D-glucanase)
(Thermotoga maritima) E-BGLUC - β-Glucosidase (Aspergillus niger) E-BGOSAG - β-Glucosidase (Agrobacterium sp.) E-BGOSPC - β-Glucosidase (Phanerochaete chrysosporium) E-BGOSTM - β-Glucosidase (Thermotoga maritima) E-EXBGOS - exo-1,3-β-D-Glucanase + β-Glucosidase
Mangan, D., Cornaggia, C., McKie, V., Kargelis. T. & V. McCleary, B. V. (2016). Analytical and Bioanalytical Chemistry, 408(15), 4159-4168.
endo-1,4-β-Glucanase (endo-cellulase, EC 3.2.1.4) is one of the most widely used enzymes in industry. Despite its importance, improved methods for the rapid, selective, quantitative assay of this enzyme have been slow to emerge. In 2014, a novel enzyme-coupled assay that addressed many of the limitations of the existing assay methodology was reported. This involved the use of a bifunctional substrate chemically derived from cellotriose. Reported herein is a much improved version of this assay employing a novel substrate, namely 4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-D-cellopentaoside.
Hide AbstractMcCleary, B. V., Mangan, D., Daly, R., Fort, S., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 385, 9-17.
A specific and sensitive substrate for the assay of endo-1,4-β-glucanase (cellulase) has been prepared. The substrate mixture comprises benzylidene end-blocked 2-chloro-4-nitrophenyl-β-cellotrioside (BzCNPG3) in the presence of thermostable β-glucosidase. Hydrolysis by exo-acting enzymes such as β-glucosidase and exo-β-glucanase is prevented by the presence of the benzylidene group on the non-reducing end D-glucosyl residue. On hydrolysis by cellulase, the 2-chloro-4-nitrophenyl-β-glycoside is immediately hydrolysed to 2-chloro-4-nitrophenol and free D-glucose by the β-glucosidase in the substrate mixture. The reaction is terminated and colour developed by the addition of a weak alkaline solution. The assay procedure is simple to use, specific, accurate, robust and readily adapted to automation. This procedure should find widespread applications in biomass enzymology and in the specific assay of endo-1,4-β-glucanase in general.
Hide Abstract