

exo-1,4-β-D-XYLOSIDASE from B. pumilus (Lot 120201b)

Recombinant

E-BXSEBP 12/18

(EC 3.2.1.37) exo-1,4- β -D-xylosidase; 1,4- β -D-xylan xylohydrolase

CAZy Family: GH43 CAS: 9025-53-0

PROPERTIES

I. ELECTROPHORETIC PURITY

- Single band on SDS-gel electrophoresis (MW ~ 61,000)
- Single major band on isoelectric focusing (pl \sim 5.7)

2. SPECIFIC ACTIVITY

14 U/mg protein at pH 7.5 and 35°C

~30 U/mg protein at pH 7.5 and 35°C on xylobiose

One Unit of β -xylosidase activity is defined as the amount of enzyme required to release one μ mole of p-nitrophenol per minute from p-nitrophenyl- β -D-xylopyranoside (5 mM) in potassium phosphate buffer (50 mM), pH 7.5 at 35°C.

3. OTHER ACTIVITIES (as a percentage of β -xylosidase activity)

Substrate	%	
p-NP-β-D-xyloside	100	
p-NP-α-L-arabinofuranoside	2.0	
p-NP-α-L-arabinopyranoside	< 0.02	
p-NP-β-D-glucoside	< 0.01	
p-NP-α-D-galactoside	< 0.01	
p-NP-β-D-mannoside	< 0.01	
p-NP-β-D-galactoside	< 0.002	
p-NP-α-D-mannoside	< 0.004	

Action on p-NP-substrates was determined at a final substrate concentration of 5 mM in potassium phosphate buffer (50 mM), pH 7.5 at 35°C.

4. RELATIVE RATES OF HYDROLYSIS OF SUBSTRATES

Substrate	% I00*	
Xylobiose		
Xylotriose	114	
Xylotetraose	61	
Xylopentaose	55	
Xylohexaose	47	
Arabinobiose	3*	
Sugar Beet Arabinan	0	

Action on oligosaccharide and polysaccharide substrates was determined at a final substrate concentration of 5 mM and 5 mg/mL, respectively, in Tris.HCl buffer (100 mM), pH 7.0 at 35°C.

^{*} Hydrolysis of xylobiose and arabinobiose releases two xylose and arabinose molecules, respectively. This is accounted for in the calculation of percentage hydrolysis.

5 .	PHYSICOCHEMICAL PROPERTIES			
	pH Optimum: Temperature Optimum:	7.5 35°C		
6.	STORAGE CONDITIONS			
	The enzyme is supplied as an ammonium sulphate suspension in 0.02% (w/v) sodium azide and should be stored at 4°C. For assay, this enzyme should be diluted in potassium phosphate buffer (50 mM), pH 7. containing I mg/mL BSA. Swirl to mix the enzyme immediately prior to use.			