D-LACTIC ACID
(D-LACTATE)
(Rapid)

ASSAY PROCEDURE

K-DATE 07/20

(*50 Manual Assays per Kit) or
(450 Auto-Analyser Assays per Kit) or
(500 Microplate Assays per Kit)

*The number of tests per kit can be doubled if all volumes are halved
INTRODUCTION:
D-lactic acid is found in many foods and beverages. Produced naturally by lactic acid bacteria, D-lactic acid is found in fermented milk products such as yogurt and cheese, and also in pickled vegetables, and cured meats and fish. The quality of milk, meat and fruit juice can be established by measurement of the D-lactic acid content. In the wine industry, the production of D-lactic acid can indicate wine spoilage by lactic acid bacteria. In the chemical industry, both D- and L-lactic acid are raw materials in the production of compounds such as polylactides and biologically degradable polymers, and applications also exist for these acids in cosmetics and pharmaceuticals.

PRINCIPLE:
The quantification of D-lactic acid requires two enzyme reactions.\(^1\) In the first reaction catalysed by D-lactate dehydrogenase (D-LDH), D-lactic acid (D-lactate) is oxidised to pyruvate in the presence of nicotinamide-adenine dinucleotide (NAD\(^+\)) (1).

\[
\begin{align*}
\text{(D-LDH)} \\
\text{(1) D-Lactate + NAD}\,^+ & \rightarrow \text{pyruvate + NADH + H}\,^+ \\
\end{align*}
\]
However, since the equilibrium of reaction (1) lies firmly in the favour of D-lactic acid and NAD\(^+\), a further reaction is required to “trap” the pyruvate product. This is achieved by the conversion of pyruvate to D-alanine and 2-oxoglutarate, with the enzyme D-glutamate-pyruvate transaminase (D-GPT) in the presence of a large excess of D-glutamate (2).

\[
\begin{align*}
\text{(D-GPT)} \\
\text{(2) Pyruvate + D-glutamate } & \rightarrow \text{D-alanine + 2-oxoglutarate} \\
\end{align*}
\]
The amount of NADH formed in the above coupled reaction is stoichiometric with the amount of D-lactic acid. It is the NADH which is measured by the increase in absorbance at 340 nm (Figure 1).

SPECIFICITY, SENSITIVITY, LINEARITY AND PRECISION:
The assay is specific for D-lactic acid. In the assay of lithium D-lactate (MW = 96.0) results of approx. 96% (w/w) can be expected.

The smallest differentiating absorbance for the assay is 0.005 absorbance units. This corresponds to 0.107 mg/L of sample solution at the maximum sample volume of 1.50 mL (or to 1.60 mg/L with a sample volume of 0.1 mL). The detection limit is 0.214 mg/L, which is derived from an absorbance difference of 0.010 and the maximum sample volume of 1.50 mL.
The assay is linear over the range of 0.5 to 30 μg of D-lactic acid per assay. In duplicate determinations using one sample solution, an absorbance difference of 0.005 to 0.010 may occur. With a sample volume of 1.50 mL, this corresponds to a D-lactic acid concentration of approx. 0.107 to 0.214 mg/L of sample solution. If the sample is diluted during sample preparation, the result is multiplied by the dilution factor, F. If, in sample preparation, the sample is weighed, e.g. 10 g/L, a difference of 0.02 to 0.05 g/100 g can be expected.

INTERFERENCE:

If the conversion of D-lactic acid has been completed within the time specified in the assay (approx. 5 min), it can be generally concluded that no interference has occurred. However, this can be further checked by adding D-lactic acid (approx. 15 μg in 0.1 mL) to the cuvette on completion of the reaction. A significant increase in the absorbance should be observed.

Interfering substances in the sample being analysed can be identified by including an internal standard. Quantitative recovery of this standard would be expected. Losses in sample handling and extraction are identified by performing recovery experiments, i.e. by adding D-lactic acid to the sample in the initial extraction steps.

SAFETY:

The general safety measures that apply to all chemical substances should be adhered to.

For more information regarding the safe usage and handling of this product please refer to the associated SDS that is available from the Megazyme website.

KITS:

Kits suitable for performing 50 assays in manual format (or 450 assays in auto-analyser format or 500 assays in microplate format) are available from Megazyme. The kits contain the full assay method plus:

- **Bottle 1:** Buffer (25 mL, pH 10.0) plus D-glutamate and sodium azide (0.02% w/v) as a preservative. Stable for > 2 years at 4°C.
- **Bottle 2:** NAD⁺. Stable for > 5 years below -10°C.
- **Bottle 3:** D-Glutamate-pyruvate transaminase suspension (1.1 mL). Stable for > 2 years at 4°C.
Bottle 4: D-Lactate dehydrogenase suspension (1.1 mL). Stable for > 2 years at 4°C.

Bottle 5: D-Lactic acid standard solution (5 mL, 0.15 mg/mL) in 0.02% (w/v) sodium azide. Stable for > 2 years; store sealed at 4°C.

PREPARATION OF REAGENT SOLUTIONS (SUPPLIED):

1. Use the contents of bottle 1 as supplied. Stable for > 2 years at 4°C.

 NOTE: The D-lactic acid standard solution is only assayed where there is some doubt about the accuracy of the spectrophotometer being used or where it is suspected that inhibition is being caused by substances in the sample. The concentration of D-lactic acid is determined directly from the extinction coefficient of NADH (see page 5).

2. Dissolve the contents of bottle 2 in 5.5 mL of distilled water. **Stable for ~ 4 weeks at 4°C** or stable for > 2 years below -10°C (to avoid repetitive freeze/thaw cycles, divide into appropriately sized aliquots and store in polypropylene tubes).

3 & 4. Use the contents of bottles 3 and 4 as supplied. Before opening for the first time, shake the bottles to remove any enzyme that may have settled on the rubber stopper. Subsequently, store the bottles in an upright position. **Swirl the bottle to mix contents before use.** Stable for > 2 years at 4°C.

5. Use the contents of bottle 5 as supplied. Stable for > 2 years; store sealed at 4°C.

 NOTE: The D-lactic acid standard solution is only assayed where there is some doubt about the accuracy of the spectrophotometer being used or where it is suspected that inhibition is being caused by substances in the sample. The concentration of D-lactic acid is determined directly from the extinction coefficient of NADH (see page 5).

EQUIPMENT (RECOMMENDED):

1. Volumetric flasks (50 mL and 100 mL).
2. Disposable plastic cuvettes (1 cm light path, 3.0 mL).
3. Micro-pipettors, e.g. Gilson Pipetman® (20 μL, 200 μL and 1 mL).
4. Positive displacement pipettor, e.g. Eppendorf Multipette® - with 25 mL Combitip® (to dispense 0.5 mL aliquots of Buffer 1 and 0.1 mL aliquots of NAD⁺ solution).

5. Analytical balance.

7. Vortex mixer (e.g. IKA® Yellowline Test Tube Shaker TTS2).

8. Stop clock.

9. Whatman GF/A glass fibre (9 cm) filter papers.

A. MANUAL ASSAY PROCEDURE:

Wavelength:	340 nm
Cuvette:	1 cm light path (glass or plastic)
Temperature:	~ 25°C
Final volume:	2.24 mL
Sample solution:	0.5-30 µg of D-lactic acid per cuvette (in 0.10-1.50 mL sample volume)

Read against air (without a cuvette in the light path) or against water

<table>
<thead>
<tr>
<th>Pipette into cuvettes</th>
<th>Blank</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>distilled water (~ 25°C)</td>
<td>1.60 mL</td>
<td>1.50 mL</td>
</tr>
<tr>
<td>sample solution 1 (buffer)</td>
<td>0.50 mL</td>
<td>0.50 mL</td>
</tr>
<tr>
<td>solution 2 (NAD⁺)</td>
<td>0.10 mL</td>
<td>0.10 mL</td>
</tr>
<tr>
<td>suspension 3 (D-GPT)</td>
<td>0.02 mL</td>
<td>0.02 mL</td>
</tr>
</tbody>
</table>

Mix* and read the absorbances of the solutions (A₁) after approx. 3 min and start the reactions by addition of:

| suspension 4 (D-LDH) | 0.02 mL | 0.02 mL |

Mix* and read the absorbances of the solutions (A₂) at the end of the reaction (approx. 5 min). If the reaction has not stopped after 5 min, continue to read the absorbances at 1 min intervals until the absorbances either remain the same, or increase constantly over 1 min** (Figure 1, page 14).

* for example with a plastic spatula or by gentle inversion after sealing the cuvette with a cuvette cap or Parafilm®.

** if this “creep” rate is greater for the sample than for the blank, extrapolate the absorbances (sample and blank) back to the time of addition of suspension 4.
CALCULATION:

Determine the absorbance difference \((A_2 - A_1) \) for both blank and sample. Subtract the absorbance difference of the blank from the absorbance difference of the sample, thereby obtaining \(\Delta A_{\text{D-lactic acid}} \). The value of \(\Delta A_{\text{D-lactic acid}} \) should as a rule be at least 0.100 absorbance units to achieve sufficiently accurate results.

The concentration of D-lactic acid can be calculated as follows:

\[
c = \frac{V \times MW}{\varepsilon \times d \times v} \times \Delta A_{\text{D-lactic acid}} \quad \text{[g/L]}
\]

where:

- \(V \) = final volume [mL]
- \(MW \) = molecular weight of D-lactic acid [g/mol]
- \(\varepsilon \) = extinction coefficient of NADH at 340 nm
 - = 6300 \([\text{l x mol}^{-1} \times \text{cm}^{-1}]\)
- \(d \) = light path [cm]
- \(v \) = sample volume [mL]

It follows for D-lactic acid:

\[
c = \frac{2.24 \times 90.1}{6300 \times 1.0 \times 0.1} \times \Delta A_{\text{D-lactic acid}} \quad \text{[g/L]}
\]

\[
= 0.3204 \times \Delta A_{\text{D-lactic acid}} \quad \text{[g/L]}
\]

If the sample has been diluted during preparation, the result must be multiplied by the dilution factor, \(F \).

When analysing solid and semi-solid samples which are weighed out for sample preparation, the content (g/100 g) is calculated from the amount weighed as follows:

Content of D-lactic acid

\[
= c_{\text{D-lactic acid}} \frac{[\text{g/L sample solution}]}{\text{weight}_{\text{sample}} [\text{g/L sample solution}]} \times 100 \quad \text{[g/100 g]}
\]

NOTE: These calculations can be simplified by using the Megazyme Mega-Calc™, downloadable from where the product appears on the Megazyme website (www.megazyme.com).
B. AUTO-ANALYSER ASSAY PROCEDURE:

NOTES:

1. The Auto-Analyser Assay Procedure for D-lactic acid can be performed using either a single point standard or a full calibration curve.
2. For each batch of samples that is applied to the determination of D-lactic acid either a single point standard or a calibration curve must be performed concurrently using the same batch of reagents.

Reagent preparation is performed as follows:

Preparation of R1:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottle 1 (buffer)</td>
<td>5 mL</td>
</tr>
<tr>
<td>bottle 2 (NAD$^+$)</td>
<td>1 mL (after adding 5.5 mL of H$_2$O to bottle 2)</td>
</tr>
<tr>
<td>bottle 3 (D-GPT)</td>
<td>0.2 mL</td>
</tr>
<tr>
<td>distilled water</td>
<td>12.85 mL</td>
</tr>
<tr>
<td>Total volume</td>
<td>19.05 mL</td>
</tr>
</tbody>
</table>

Preparation of R2:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottle 4 (D-LDH)</td>
<td>0.2 mL</td>
</tr>
<tr>
<td>distilled water</td>
<td>2.2 mL</td>
</tr>
<tr>
<td>Total volume</td>
<td>2.4 mL</td>
</tr>
</tbody>
</table>

EXAMPLE METHOD:

R1: 0.200 mL
Sample: ~ 0.01 mL
R2: 0.025 mL

Reaction time: ~ 5 min at 37°C
Wavelength: 340 nm
Prepared reagent stability: > 2 days when refrigerated
Calculation: endpoint
Reaction direction: increase
Linearity: up to 0.3 g/L of D-lactic acid using 0.01 mL sample volume
C. MICROPLATE ASSAY PROCEDURE:

Wavelength: 340 nm

Microplate: 96-well (e.g. clear flat-bottomed, glass or plastic)

Temperature: ~ 25°C

Final volume: 0.224 mL

Linearity: 0.5-3.0 μg of D-lactic acid per well
(in 0.01-0.15 mL sample volume)

* for example using microplate shaker, shake function on a microplate reader or repeated aspiration (e.g. using a pipettor set at 50-100 μL volume).

NOTES:

1. The Microplate Assay Procedure for D-lactic acid can be performed using either a single point standard or a full calibration curve.
2. For each batch of samples that is applied to the determination of D-lactic acid **either a single point standard or a calibration curve must be performed concurrently using the same batch of reagents.**

Pipette into wells

<table>
<thead>
<tr>
<th>Pipette into wells</th>
<th>Blank</th>
<th>Sample</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>distilled water</td>
<td>0.160 mL</td>
<td>0.150 mL</td>
<td>0.150 mL</td>
</tr>
<tr>
<td>sample solution</td>
<td>-</td>
<td>0.010 mL</td>
<td>-</td>
</tr>
<tr>
<td>standard solution</td>
<td>-</td>
<td>-</td>
<td>0.010 mL</td>
</tr>
<tr>
<td>solution 1 (buffer)</td>
<td>0.050 mL</td>
<td>0.050 mL</td>
<td>0.050 mL</td>
</tr>
<tr>
<td>solution 2 (NAD^+)</td>
<td>0.010 mL</td>
<td>0.010 mL</td>
<td>0.010 mL</td>
</tr>
<tr>
<td>suspension 3 (D-GPT)</td>
<td>0.002 mL</td>
<td>0.002 mL</td>
<td>0.002 mL</td>
</tr>
</tbody>
</table>

Mix* and read the absorbances of the solutions (A₁) after approx. 3 min and start the reactions by addition of:

| suspension 4 (D-LDH) | 0.002 mL | 0.002 mL | 0.002 mL |

Mix* and read the absorbances of the solutions (A₂) at the end of the reaction (approx. 5 min). If the reaction has not stopped after 5 min, continue to read the absorbances at 1 min intervals until the absorbances remain the same or increase constantly over 1 min.

* for example using microplate shaker, shake function on a microplate reader or repeated aspiration (e.g. using a pipettor set at 50-100 μL volume).

CALCULATION (Microplate Assay Procedure):

\[
g/L = \frac{\Delta A_{\text{sample}}}{\Delta A_{\text{standard}}} \times g/L \text{ standard} \times F
\]

If the sample is diluted during preparation, the result must be multiplied by the dilution factor, F.
SAMPLE PREPARATION:

1. Sample dilution.

The amount of D-lactic acid present in the cuvette (i.e. in the 0.1 mL of sample being analysed) should range between 0.5 and 30 μg. The sample solution must therefore be diluted sufficiently to yield a D-lactic acid concentration between 0.005 and 0.30 g/L.

Dilution Table

<table>
<thead>
<tr>
<th>Estimated concentration of D-lactic acid (g/L)</th>
<th>Dilution with water</th>
<th>Dilution factor (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.30</td>
<td>No dilution required</td>
<td>1</td>
</tr>
<tr>
<td>0.30-3.0</td>
<td>1 + 9</td>
<td>10</td>
</tr>
<tr>
<td>3.0-30</td>
<td>1 + 99</td>
<td>100</td>
</tr>
<tr>
<td>> 30</td>
<td>1 + 999</td>
<td>1000</td>
</tr>
</tbody>
</table>

If the value of $\Delta A_{\text{D-lactic acid}}$ is too low (e.g. < 0.100), weigh out more sample or dilute less strongly. Alternatively, the sample volume to be pipetted into the cuvette can be increased up to 1.50 mL, making sure that the sum of the sample and distilled water components in the reaction is 1.60 mL and using the new sample volume in the equation.

2. Sample clarification.

a. **Solutions:**

 Carrez I solution. Dissolve 3.60 g of potassium hexacyanoferrate (II) ($\{K_4[\text{Fe(CN)}_6]\cdot 3\text{H}_2\text{O}\}$ (Sigma cat. no. P9387) in 100 mL of distilled water. Store at room temperature.

 Carrez II solution. Dissolve 7.20 g of zinc sulphate ($\text{ZnSO}_4\cdot 7\text{H}_2\text{O}$) (Sigma cat. no. Z4750) in 100 mL of distilled water. Store at room temperature.

 Sodium hydroxide ($\text{NaOH}, 100 \text{ mM}$). Dissolve 4 g of NaOH in 1 L of distilled water. Store at room temperature.

b. **Procedure:**

 Pipette the liquid sample into a 100 mL volumetric flask which contains approx. 60 mL of distilled water, or weigh sufficient quantity of the sample into a 100 mL volumetric flask and add 60 mL of distilled water. Carefully add 5 mL of Carrez I solution, 5 mL of Carrez II solution and 10 mL of NaOH solution (100 mM). Mix after each addition. Fill the volumetric flask to the mark, mix and filter.
3. General considerations.

(a) **Liquid samples:** use clear, slightly coloured liquid samples directly in the assay.

(b) **Acidic samples:** if > 0.1 mL of an acidic sample is to be used undiluted (such as wine or fruit juice), the pH of the solution should be increased to approx. 10.0 using 2 M NaOH, and the solution incubated at room temperature for 30 min.

(c) **Carbon dioxide:** samples containing a significant amount of carbon dioxide, such as beer, should be degassed by increasing the pH to approx. 10.0 with 2 M NaOH and gentle stirring, or by stirring with a glass rod.

(d) **Coloured samples:** an additional sample blank, i.e. sample with no D-LDH, may be necessary in the case of coloured samples.

(e) **Strongly coloured samples:** if used undiluted, strongly coloured samples should be treated by the addition of 0.2 g of polyvinylpolypyrrolidone (PVPP) per 10 mL of sample. Shake the tube vigorously for 5 min and then filter through Whatman No. 1 filter paper.

(f) **Solid samples:** homogenise or crush solid samples in distilled water and filter if necessary.

(g) **Samples containing fat:** extract such samples with hot water at a temperature above the melting point of the fat, e.g. in a 100 mL volumetric flask at 60°C. Allow to cool to 20°C and fill the volumetric flask to the mark with distilled water. Store on ice or in a refrigerator for 15-30 min to allow the fat to separate and then filter. Discard the first few mL of filtrate and use the clear supernatant (which may be slightly opalescent) for assay. Alternatively, clarify with Carrez reagents.

(h) **Samples containing protein:** deproteinise samples containing protein by adding an equal volume of ice-cold 1 M perchloric acid with mixing. Centrifuge at 1,500 g for 10 min and neutralise the supernatant with 1 M KOH. Alternatively, use Carrez reagents.

SAMPLE PREPARATION EXAMPLES:

(a) **Determination of free D-lactic acid in wine.**
The free D-lactic acid concentration \([F]\) of white and red wine can generally be determined without any sample treatment (except dilution according to the dilution table). **Typically, a dilution of 1:5 and sample volume of 0.1 mL are satisfactory.**
(b) **Determination of free and esterified D-lactic acid in wine.**

The concentration of both free and esterified D-lactic acid \([F + E]\) in white and red wine can be determined as follows: add 2 mL of 2 M NaOH to 20 mL of wine and heat under reflux for 15 min with stirring. After cooling, carefully adjust the pH of the solution to 10.0 with 1 M H\(_2\)SO\(_4\) and adjust the volume to 100 mL with distilled water. Then analyse the sample according to the general procedure, with dilution where necessary. *Typically, a dilution of 1:5 is required and a sample volume of 0.1 mL is satisfactory.*

The concentration obtained is the sum of the free and esterified D-lactic acid \([F + E]\), and thus the esterified D-lactic acid concentration alone \([E]\) can be calculated as follows:

\[
[E] = [F + E] - [F] \quad \text{[g/L]}
\]

(c) **Determination of D-lactic acid in beer.**

The D-lactic acid concentration of beer can generally be determined without any sample treatment, except removal of carbon dioxide by stirring for approx. 1 min with a glass rod. *Typically, no dilution is required, and a sample volume of 0.2 mL is satisfactory.*

(d) **Determination of D-lactic acid in yogurt and milk.**

Accurately weigh approx. 1 g of homogenised yogurt or 10 g of milk into a 100 mL volumetric flask containing 60 mL of distilled water. Add the following solutions and mix after each addition: 2 mL of Carrez I solution, 2 mL of Carrez II solution and 4 mL of NaOH solution (100 mM). Fill up to the mark with distilled water, mix and filter. *Typically, no further dilution is required and sample volumes of 0.1 mL (for yogurt) and 1.0 mL (for milk) are satisfactory.*

(e) **Determination of D-lactic acid in cheese.**

Accurately weigh approx. 1 g of grated cheese into a 100 mL volumetric flask containing approx. 70 mL of distilled water and heat at 60°C with occasional shaking for 20 min, or until fully dispersed. Fill up to the mark with distilled water, place in a refrigerator (or ice-water) for approx. 20 min to allow separation of the fat and then filter. *Typically, no dilution is required and a sample volume of 0.1 mL is satisfactory.*

(f) **Determination of D-lactic acid in vinegar and vinegar-containing liquids.**

The D-lactic acid concentration of vinegar or other pickling liquids can generally be determined without any sample treatment (except filtration where necessary and dilution according to the dilution table). *Typically, no dilution is required and a sample volume of 0.1 mL is satisfactory.*
(g) Determination of D-lactic acid in sauerkraut juice.
The D-lactic acid concentration of sauerkraut juice can generally be determined without any sample treatment (except filtration where necessary and dilution according to the dilution table). Typically, a dilution of 1:25 and sample volume of 0.1 mL are satisfactory.

(h) Determination of D-lactic acid in meat products.
Accurately weigh approx. 5 g of homogenised sample into a beaker containing 20 mL of 1 M perchloric acid and homogenise with an Ultra-turrax® (or equivalent) for 5 min. Add approx. 40 mL of distilled water and adjust the pH to approx. 10.0 with 2 M KOH, using pH test strips. Transfer the contents quantitatively to a 100 mL volumetric flask and fill to the mark with distilled water (if a fat layer develops, make sure this is above the mark, and the aqueous layer is at the mark). Place in a refrigerator (or ice-water) for approx. 20 min to allow separation of fat and precipitation of potassium perchlorate. Filter, discarding the first few mL of filtrate and use the clear possibly slightly turbid solution, diluted if necessary, for the assay. Typically, a dilution of 1:2 and sample volume of 0.1 mL are satisfactory.

(i) Determination of D-lactic acid in vegetable juices, fruit juices and similar beverages.
Dilute the sample to yield a D-lactic acid concentration of less than 0.35 g/L (see dilution table). Clear, neutral solutions can generally be determined without any sample treatment. Turbid liquids generally only require filtering before the dilution step.

If coloured vegetable juice (such as tomato juice) requires decolourising, proceed as follows: accurately weigh approx. 5 g of homogenised sample into a 100 mL volumetric flask containing 60 mL of distilled water. Add the following solutions and mix after each addition: 2 mL of Carrez I solution, 2 mL of Carrez II solution and 4 mL of 0.1 M NaOH solution. Fill up to the mark with distilled water, mix and filter. Typically, no further dilution is required and a sample volume of 0.1 mL is satisfactory.

If coloured fruit juice (such as orange juice) requires decolourising, proceed as follows: adjust 25 mL of filtered sample to a pH of approx. 10.0 using 2 M NaOH. Quantitatively transfer the solution to a 50 mL volumetric flask and adjust to volume with distilled water. Transfer to a beaker and add 1 g of PVPP, stir for 2 min and filter through Whatman No. 1 (9 cm) filter paper. Typically, no further dilution is required and a sample volume of 0.1 mL is satisfactory.
(j) Determination of D-lactic acid in whole blood samples.

a. Solutions:
Concentrated Carrez I solution. Dissolve 30 g of potassium hexacyanoferrate (II) \(\text{K}_4\text{[Fe(CN)]}_6\cdot3\text{H}_2\text{O}\) (Sigma cat. no. P9387) in 200 mL of distilled water. Store at room temperature.

Concentrated Carrez II solution. Dissolve 60 g of zinc sulphate \{\text{ZnSO}_4\cdot7\text{H}_2\text{O}\} (Sigma cat. no. Z4750) in 200 mL of distilled water. Store at room temperature.

b. Procedure:
Heat 1 mL of whole blood sample at approx. 80°C for 20 min in a microfuge tube then centrifuge at 13,000 \(\times\) g for 10 min and recover the supernatant. Add 20 µL Carrez Reagent II and mix thoroughly, then add 20 µL Carrez Reagent I and mix thoroughly. Centrifuge the sample again at 13,000 \(\times\) g for 10 min and recover the clarified supernatant for use in the assay. If required, dilute the sample appropriately in distilled water for the assay.

Note: The final volume of the clarified supernatant will be approx. one quarter of the starting volume of the original sample. Therefore adjust the volume of the starting material as required to obtain sufficient volume of clarified sample for the test.

(k) Determination of D-lactic acid in biological tissue samples.

Accurately weigh approx. 5 g of representative biological tissue into a 100 mL Duran® bottle. Add 20 mL of 1 M perchloric acid and homogenise for 2 min using an Ultra-turrax® or Polytron® homogeniser (or equivalent). Quantitatively transfer to a 40 mL glass beaker and adjust the pH to approx. 8.0 using 2 M KOH. Quantitatively transfer to a 100 mL volumetric flask and adjust to the mark with distilled water (ensuring the fat containing layer is “above” the mark, and the aqueous layer is “at” the mark). Store on ice for 20 min to precipitate potassium perchlorate and allow separation of the fat (if present). Centrifuge an appropriate volume of the sample at 13,000 \(\times\) g for 10 min and recover the clarified supernatant for use in the assay, alternatively filter through Whatman No. 1 filter paper, discarding the first 3-5 mL, and use the clear filtrate for the assay. If required, dilute the sample appropriately in distilled water for the assay.

Note: The amount of starting material and volumes used can be adjusted accordingly depending on the amount of analyte present in the sample.
(l) Determination of D-lactic acid in biological fluid samples (e.g. urine and serum).

For some biological fluid samples it may be sufficient to test them directly without any sample preparation other than appropriate dilution in distilled water. If this is not adequate then deproteinisation with either perchloric acid or trichloracetic acid may be required.

Deproteinise biological samples by adding an equal volume of ice-cold 1 M perchloric acid with mixing. Centrifuge an appropriate volume of the sample at 1,500 x g for 10 min and recover the supernatant for use in the assay, alternatively filter through Whatman No. 1 filter paper, discarding the first 3-5 mL, and use the filtrate for the assay.

If required, dilute the sample appropriately in distilled water for the assay. Alternatively, use 50% (w/v) trichloroacetic acid instead of perchloric acid.

REFERENCE:

Figure 1. Increase in absorbance at 340 nm on incubation of 3.75-30 μg of D-lactate with D-lactate dehydrogenase plus D-glutamate-pyruvate transaminase in the presence of NAD⁺.

NOTES:
WITHOUT GUARANTEE
The information contained in this booklet is, to the best of our knowledge, true and accurate, but since the conditions of use are beyond our control, no warranty is given or is implied in respect of any recommendation or suggestions which may be made or that any use will not infringe any patents.