The product has been successfully added to your shopping list.

2-Chloro-4-nitrophenyl-β-cellotetraoside

2-Chloro-4-nitrophenyl-beta-cellotetraoside O-CPNPG4-50
Product code: O-CPNPG4-50
€328.00

50 mg

Prices exclude VAT

Available for shipping

Content: 50 mg
Shipping Temperature: Ambient
Storage Temperature: Below -10oC
Physical Form: Solid
Stability: > 10 years under recommended storage conditions
CAS Number: 189094-93-7
Molecular Formula: C30H44CINO23
Molecular Weight: 822.1
Purity: > 95%
Substrate For (Enzyme): endo-Cellulase
Assay Format: Spectrophotometer, Microplate, Auto-analyser
Detection Method: Absorbance
Wavelength (nm): 400-420

High purity 2-Chloro-4-nitrophenyl-β-cellotetraoside for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

A potential substrate for the measurement of cellulase (endo-1,4-β-glucanase).

Documents
Certificate of Analysis
Safety Data Sheet
Booklet
Publications
Megazyme publication
A novel automatable enzyme-coupled colorimetric assay for endo-1,4-β-glucanase (cellulase).

Mangan, D., Cornaggia, C., McKie, V., Kargelis. T. & V. McCleary, B. V. (2016). Analytical and Bioanalytical Chemistry, 408(15), 4159-4168.

endo-1,4-β-Glucanase (endo-cellulase, EC 3.2.1.4) is one of the most widely used enzymes in industry. Despite its importance, improved methods for the rapid, selective, quantitative assay of this enzyme have been slow to emerge. In 2014, a novel enzyme-coupled assay that addressed many of the limitations of the existing assay methodology was reported. This involved the use of a bifunctional substrate chemically derived from cellotriose. Reported herein is a much improved version of this assay employing a novel substrate, namely 4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-D-cellopentaoside.

Hide Abstract
Megazyme publication
Novel substrates for the measurement of endo-1,4-β-glucanase (endo-cellulase).

McCleary, B. V., Mangan, D., Daly, R., Fort, S., Ivory, R. & McCormack, N. (2014). Carbohydrate Research, 385, 9-17.

A specific and sensitive substrate for the assay of endo-1,4-β-glucanase (cellulase) has been prepared. The substrate mixture comprises benzylidene end-blocked 2-chloro-4-nitrophenyl-β-cellotrioside (BzCNPG3) in the presence of thermostable β-glucosidase. Hydrolysis by exo-acting enzymes such as β-glucosidase and exo-β-glucanase is prevented by the presence of the benzylidene group on the non-reducing end D-glucosyl residue. On hydrolysis by cellulase, the 2-chloro-4-nitrophenyl-β-glycoside is immediately hydrolysed to 2-chloro-4-nitrophenol and free D-glucose by the β-glucosidase in the substrate mixture. The reaction is terminated and colour developed by the addition of a weak alkaline solution. The assay procedure is simple to use, specific, accurate, robust and readily adapted to automation. This procedure should find widespread applications in biomass enzymology and in the specific assay of endo-1,4-β-glucanase in general.

Hide Abstract
Publication
Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Cellulase Assay Kit CellG5 Method K-CellG5
Cellulase Assay Kit (CellG5 Method)
€208.00
Cellafluor Reagent R-CELLFLR
Cellafluor Reagent
€161.00